
You don’t need N dimensions when you have
pandas

Pietro Battiston
Department of Economics, Management and Statistics

University of Milan-Bicocca
me@pietrobattiston.it

Pycon X
May 5, 2019 – Florence



Who am I?

I Researcher in Economics (discovered Python as a Math
student)

I Working on social and economic networks
(book in fall: “Network responsibility How contagion
shapes our societies, how our societies can shape contagion”)

I (Mostly) doing research with Open-Source software

I Only Python user I know of in my department
. . . until next Tuesday!

I pandas core dev



Who am I?

I Researcher in Economics (discovered Python as a Math
student)

I Working on social and economic networks
(book in fall: “Network responsibility How contagion
shapes our societies, how our societies can shape contagion”)

I (Mostly) doing research with Open-Source software

I Only Python user I know of in my department
. . . until next Tuesday!

I pandas core dev



Who am I?

I Researcher in Economics (discovered Python as a Math
student)

I Working on social and economic networks
(book in fall: “Network responsibility How contagion
shapes our societies, how our societies can shape contagion”)

I (Mostly) doing research with Open-Source software

I Only Python user I know of in my department
. . . until next Tuesday!

I pandas core dev



Who am I?

I Researcher in Economics (discovered Python as a Math
student)

I Working on social and economic networks
(book in fall: “Network responsibility How contagion
shapes our societies, how our societies can shape contagion”)

I (Mostly) doing research with Open-Source software

I Only Python user I know of in my department
. . . until next Tuesday!

I pandas core dev



Who am I?

I Researcher in Economics (discovered Python as a Math
student)

I Working on social and economic networks
(book in fall: “Network responsibility How contagion
shapes our societies, how our societies can shape contagion”)

I (Mostly) doing research with Open-Source software

I Only Python user I know of in my department

. . . until next Tuesday!

I pandas core dev



Who am I?

I Researcher in Economics (discovered Python as a Math
student)

I Working on social and economic networks
(book in fall: “Network responsibility How contagion
shapes our societies, how our societies can shape contagion”)

I (Mostly) doing research with Open-Source software

I Only Python user I know of in my department
. . . until next Tuesday!

I pandas core dev



Who am I?

I Researcher in Economics (discovered Python as a Math
student)

I Working on social and economic networks
(book in fall: “Network responsibility How contagion
shapes our societies, how our societies can shape contagion”)

I (Mostly) doing research with Open-Source software

I Only Python user I know of in my department
. . . until next Tuesday!

I pandas core dev



Disclaimer

[. . . speaker bores audience about personal issues. . . ]



What is pandas?

I The Python library for data manipulation and analysis

I The way for pythonists who do data analysis not to feel
inferior to “Rists”, with their dataframes (well on the
contrary!)

I In pratice, “just”:
I data structures that (heavily) extend numpy’s arrays
I (a lot of) additional utilities (IO, datetime. . . )



What is pandas?

I The Python library for data manipulation and analysis

I The way for pythonists who do data analysis not to feel
inferior to “Rists”, with their dataframes (well on the
contrary!)

I In pratice, “just”:
I data structures that (heavily) extend numpy’s arrays
I (a lot of) additional utilities (IO, datetime. . . )



What is pandas?

I The Python library for data manipulation and analysis

I The way for pythonists who do data analysis not to feel
inferior to “Rists”, with their dataframes (well on the
contrary!)

I In pratice, “just”:
I data structures that (heavily) extend numpy’s arrays

I (a lot of) additional utilities (IO, datetime. . . )



What is pandas?

I The Python library for data manipulation and analysis

I The way for pythonists who do data analysis not to feel
inferior to “Rists”, with their dataframes (well on the
contrary!)

I In pratice, “just”:
I data structures that (heavily) extend numpy’s arrays
I (a lot of) additional utilities (IO, datetime. . . )



pandas in one equation

numpy : list = pandas : dict

(numpy : nested list = pandas : nested dict)



pandas in one equation

numpy : list = pandas : dict

(numpy : nested list = pandas : nested dict)



Climbing up dimensions

1
I n :
np . a r r a y (1 , ndmin=1)
Out :
a r r a y ( [ 1 ] )

I n :
pd . S e r i e s ( [ 1 ] )
Out :
0 1
dtype : i n t 6 4

2
I n :
np . a r r a y (1 , ndmin=2)
Out :
a r r a y ( [ [ 1 ] ] )

I n :
pd . DataFrame ( [ [ 1 ] ] )
Out :

0
0 1

3
I n :
np . a r r a y (1 , ndmin=3)
Out :
a r r a y ( [ [ [ 1 ] ] ] )

I n :
pd . Pane l ( [ [ 1 ] ] )
Out :
FutureWarning : Pane l i s
d ep r e ca t ed [ . . . ]

4
I n :
np . a r r a y (1 , ndmin=4)
Out :
a r r a y ( [ [ [ [ 1 ] ] ] ] )

I n :
pd . Panel4D ( [ [ 1 ] ] )
Out :
A t t r i b u t e E r r o r : [ . . . ]

. . . . . . . . . . . .

N
I n :
np . a r r a y (1 , ndmin=n )
Out :
a r r a y ( [ . . . [ 1 ] . . . ] )

?!



Climbing up dimensions

1
I n :
np . a r r a y (1 , ndmin=1)
Out :
a r r a y ( [ 1 ] )

I n :
pd . S e r i e s ( [ 1 ] )
Out :
0 1
dtype : i n t 6 4

2
I n :
np . a r r a y (1 , ndmin=2)
Out :
a r r a y ( [ [ 1 ] ] )

I n :
pd . DataFrame ( [ [ 1 ] ] )
Out :

0
0 1

3
I n :
np . a r r a y (1 , ndmin=3)
Out :
a r r a y ( [ [ [ 1 ] ] ] )

I n :
pd . Pane l ( [ [ 1 ] ] )
Out :
FutureWarning : Pane l i s
d ep r e ca t ed [ . . . ]

4
I n :
np . a r r a y (1 , ndmin=4)
Out :
a r r a y ( [ [ [ [ 1 ] ] ] ] )

I n :
pd . Panel4D ( [ [ 1 ] ] )
Out :
A t t r i b u t e E r r o r : [ . . . ]

. . . . . . . . . . . .

N
I n :
np . a r r a y (1 , ndmin=n )
Out :
a r r a y ( [ . . . [ 1 ] . . . ] )

?!



Climbing up dimensions

1
I n :
np . a r r a y (1 , ndmin=1)
Out :
a r r a y ( [ 1 ] )

I n :
pd . S e r i e s ( [ 1 ] )
Out :
0 1
dtype : i n t 6 4

2
I n :
np . a r r a y (1 , ndmin=2)
Out :
a r r a y ( [ [ 1 ] ] )

I n :
pd . DataFrame ( [ [ 1 ] ] )
Out :

0
0 1

3
I n :
np . a r r a y (1 , ndmin=3)
Out :
a r r a y ( [ [ [ 1 ] ] ] )

I n :
pd . Pane l ( [ [ 1 ] ] )
Out :
FutureWarning : Pane l i s
d ep r e ca t ed [ . . . ]

4
I n :
np . a r r a y (1 , ndmin=4)
Out :
a r r a y ( [ [ [ [ 1 ] ] ] ] )

I n :
pd . Panel4D ( [ [ 1 ] ] )
Out :
A t t r i b u t e E r r o r : [ . . . ]

. . . . . . . . . . . .

N
I n :
np . a r r a y (1 , ndmin=n )
Out :
a r r a y ( [ . . . [ 1 ] . . . ] )

?!



Climbing up dimensions

1
I n :
np . a r r a y (1 , ndmin=1)
Out :
a r r a y ( [ 1 ] )

I n :
pd . S e r i e s ( [ 1 ] )
Out :
0 1
dtype : i n t 6 4

2
I n :
np . a r r a y (1 , ndmin=2)
Out :
a r r a y ( [ [ 1 ] ] )

I n :
pd . DataFrame ( [ [ 1 ] ] )
Out :

0
0 1

3
I n :
np . a r r a y (1 , ndmin=3)
Out :
a r r a y ( [ [ [ 1 ] ] ] )

I n :
pd . Pane l ( [ [ 1 ] ] )
Out :
FutureWarning : Pane l i s
d ep r e ca t ed [ . . . ]

4
I n :
np . a r r a y (1 , ndmin=4)
Out :
a r r a y ( [ [ [ [ 1 ] ] ] ] )

I n :
pd . Panel4D ( [ [ 1 ] ] )
Out :
A t t r i b u t e E r r o r : [ . . . ]

. . . . . . . . . . . .

N
I n :
np . a r r a y (1 , ndmin=n )
Out :
a r r a y ( [ . . . [ 1 ] . . . ] )

?!



Climbing up dimensions

1
I n :
np . a r r a y (1 , ndmin=1)
Out :
a r r a y ( [ 1 ] )

I n :
pd . S e r i e s ( [ 1 ] )
Out :
0 1
dtype : i n t 6 4

2
I n :
np . a r r a y (1 , ndmin=2)
Out :
a r r a y ( [ [ 1 ] ] )

I n :
pd . DataFrame ( [ [ 1 ] ] )
Out :

0
0 1

3
I n :
np . a r r a y (1 , ndmin=3)
Out :
a r r a y ( [ [ [ 1 ] ] ] )

I n :
pd . Pane l ( [ [ 1 ] ] )
Out :
FutureWarning : Pane l i s
d ep r e ca t ed [ . . . ]

4
I n :
np . a r r a y (1 , ndmin=4)
Out :
a r r a y ( [ [ [ [ 1 ] ] ] ] )

I n :
pd . Panel4D ( [ [ 1 ] ] )
Out :
A t t r i b u t e E r r o r : [ . . . ]

. . . . . . . . . . . .

N
I n :
np . a r r a y (1 , ndmin=n )
Out :
a r r a y ( [ . . . [ 1 ] . . . ] )

?!



Are two dimensions enough?

No



Are two dimensions enough?

No



So what, are pandas devs crazy?!

No



So what, are pandas devs crazy?!

No



The structure of pandas data structures

pd.Series

pd.Index

s.loc["a"]

pd.DataFrame

pd.Index

p
d
.
I
n
d
e
x

df.loc["a", "b"]

→1.1 pandas for dummies



The structure of pandas data structures

pd.Series

pd.Index

s.loc["a"]

pd.DataFrame

pd.Index

p
d
.
I
n
d
e
x

df.loc["a", "b"]

→1.1 pandas for dummies



The structure of pandas data structures

pd.Series

pd.Index

s.loc["a"]

pd.DataFrame

pd.Index
p
d
.
I
n
d
e
x

df.loc["a", "b"]

→1.1 pandas for dummies



There are many types of indexes

pd.Int64Index, pd.RangeIndex, pd.FloatIndex

pd.DatetimeIndex, pd.PeriodIndex

pd.IntervalIndex . . .

The star tonight: pd.MultiIndex.



There are many types of indexes

pd.Int64Index, pd.RangeIndex, pd.FloatIndex

pd.DatetimeIndex, pd.PeriodIndex

pd.IntervalIndex . . .

The star tonight: pd.MultiIndex.



There are many types of indexes

pd.Int64Index, pd.RangeIndex, pd.FloatIndex

pd.DatetimeIndex, pd.PeriodIndex

pd.IntervalIndex . . .

The star tonight: pd.MultiIndex.



There are many types of indexes

pd.Int64Index, pd.RangeIndex, pd.FloatIndex

pd.DatetimeIndex, pd.PeriodIndex

pd.IntervalIndex . . .

The star tonight: pd.MultiIndex.



What a MultiIndex looks like

→1.1 Basic example



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



But then, isn’t DataFrame superfluous?!

No

I Remember: we don’t want to feel inferior to “Rists”

I More importantly, people are just too used to having data in
tables

I Even more importantly, we want to switch data between
columns and index level

→1.2 - Unbalanced data

I Most importantly, we want to “split” dimensions in two
groups when doing operations

→1.2 - Reshape



But then, isn’t DataFrame superfluous?!

No

I Remember: we don’t want to feel inferior to “Rists”

I More importantly, people are just too used to having data in
tables

I Even more importantly, we want to switch data between
columns and index level

→1.2 - Unbalanced data

I Most importantly, we want to “split” dimensions in two
groups when doing operations

→1.2 - Reshape



But then, isn’t DataFrame superfluous?!

No

I Remember: we don’t want to feel inferior to “Rists”

I More importantly, people are just too used to having data in
tables

I Even more importantly, we want to switch data between
columns and index level

→1.2 - Unbalanced data

I Most importantly, we want to “split” dimensions in two
groups when doing operations

→1.2 - Reshape



But then, isn’t DataFrame superfluous?!

No

I Remember: we don’t want to feel inferior to “Rists”

I More importantly, people are just too used to having data in
tables

I Even more importantly, we want to switch data between
columns and index level

→1.2 - Unbalanced data

I Most importantly, we want to “split” dimensions in two
groups when doing operations

→1.2 - Reshape



But then, isn’t DataFrame superfluous?!

No

I Remember: we don’t want to feel inferior to “Rists”

I More importantly, people are just too used to having data in
tables

I Even more importantly, we want to switch data between
columns and index level

→1.2 - Unbalanced data

I Most importantly, we want to “split” dimensions in two
groups when doing operations

→1.2 - Reshape



If you really need n-dimensional, indexed structures



“groupby” is lavels aware!

df.groupby(level=...)

→1.2 Groupby



Thanks
to

I you, for your patience

I the organizers, for their faith in my succinctness

I Michelangelo, for his pioneering use of indexes

To contact me: me@pietrobattiston.it



Thanks
to

I you, for your patience

I the organizers, for their faith in my succinctness

I Michelangelo, for his pioneering use of indexes

To contact me: me@pietrobattiston.it



Thanks
to

I you, for your patience

I the organizers, for their faith in my succinctness

I Michelangelo, for his pioneering use of indexes

To contact me: me@pietrobattiston.it


