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Who am I?

I Researcher in Economics (discovered Python as a Math
student)

I Working on social and economic networks
(book in fall: “Network responsibility How contagion
shapes our societies, how our societies can shape contagion”)

I (Mostly) doing research with Open-Source software

I Only Python user I know of in my department
. . . until next Tuesday!

I pandas core dev
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Disclaimer

[. . . speaker bores audience about personal issues. . . ]



What is pandas?

I The Python library for data manipulation and analysis

I The way for pythonists who do data analysis not to feel
inferior to “Rists”, with their dataframes (well on the
contrary!)

I In pratice, “just”:
I data structures that (heavily) extend numpy’s arrays
I (a lot of) additional utilities (IO, datetime. . . )
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pandas in one equation

numpy : list = pandas : dict

(numpy : nested list = pandas : nested dict)
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Climbing up dimensions

1
I n :
np . a r r a y (1 , ndmin=1)
Out :
a r r a y ( [ 1 ] )

I n :
pd . S e r i e s ( [ 1 ] )
Out :
0 1
dtype : i n t 6 4

2
I n :
np . a r r a y (1 , ndmin=2)
Out :
a r r a y ( [ [ 1 ] ] )

I n :
pd . DataFrame ( [ [ 1 ] ] )
Out :

0
0 1

3
I n :
np . a r r a y (1 , ndmin=3)
Out :
a r r a y ( [ [ [ 1 ] ] ] )

I n :
pd . Pane l ( [ [ 1 ] ] )
Out :
FutureWarning : Pane l i s
d ep r e ca t ed [ . . . ]

4
I n :
np . a r r a y (1 , ndmin=4)
Out :
a r r a y ( [ [ [ [ 1 ] ] ] ] )

I n :
pd . Panel4D ( [ [ 1 ] ] )
Out :
A t t r i b u t e E r r o r : [ . . . ]

. . . . . . . . . . . .

N
I n :
np . a r r a y (1 , ndmin=n )
Out :
a r r a y ( [ . . . [ 1 ] . . . ] )

?!
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Are two dimensions enough?

No
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So what, are pandas devs crazy?!
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The structure of pandas data structures

pd.Series

pd.Index

s.loc["a"]

pd.DataFrame

pd.Index

p
d
.
I
n
d
e
x

df.loc["a", "b"]

→1.1 pandas for dummies
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There are many types of indexes

pd.Int64Index, pd.RangeIndex, pd.FloatIndex

pd.DatetimeIndex, pd.PeriodIndex

pd.IntervalIndex . . .

The star tonight: pd.MultiIndex.
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What a MultiIndex looks like

→1.1 Basic example



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



What do we gain/loose

Pros

I simpler implementation

I extreme flexibility

I intuitive operations (later)

I efficient use of space for unbalanced data

vs. →1.2 - Unbalanced data

Cons

I comparatively inefficient for balanced data

I more complex semantics for DataFrame
→1.2 - Mi DF



But then, isn’t DataFrame superfluous?!

No

I Remember: we don’t want to feel inferior to “Rists”

I More importantly, people are just too used to having data in
tables

I Even more importantly, we want to switch data between
columns and index level

→1.2 - Unbalanced data

I Most importantly, we want to “split” dimensions in two
groups when doing operations

→1.2 - Reshape
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If you really need n-dimensional, indexed structures



“groupby” is lavels aware!

df.groupby(level=...)

→1.2 Groupby



Thanks
to

I you, for your patience

I the organizers, for their faith in my succinctness

I Michelangelo, for his pioneering use of indexes

To contact me: me@pietrobattiston.it
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