0000362785

ALMA MATER STUDIORUM - UNIVERSITA DI
BOLOGNA

FACOLTA DI ECONOMIA

LAUREA MAGISTRALIS IN ECONOMICS

Rational or smart?
An auction study with simulation.

PIETRO BATTISTON Gi1AcoMO CALZOLARI

Topics in Economic Theory

SESSIONE PRIMA
ANNO AcCADEMICO 2009/2010

Chapter 1

Quantal response functions

The concept of quantal response function is a central tool of the quan-
tal response equilibrium, which has been first proposed by McKelvey
and Palfrey in [3] to model games in which out of (Nash) equilibrium
decisions are assumed to play an important role, too relevant to be kept
out of the picture.

1.1 Definition

We know that, given a discrete game of N players, a Nash equilibrium
in mixed strategies is a set of individual mixed strategies

st =(s],...,8)

’ n

such that Vi, and for any (mixed) strategy 3; available to player 7, we
have that
ui(si, s*;) > u(3i,5%;)
where by u;(s;, s_;) we denote the expected payoff of an agent play-
ing strategy s; against other agents playing strategies s_;.

Under those assumptions, and given a zero-mean error distribution f;
over R” for each player,! the definition of a quantal response equilibrium
implies the construction of a “perturbed payoff function” u defined as

follows: if
u;(85,5-;) = E si; - wi(J, 5-4),
JES;
then?
A . /
Ui(si,5_4) = E si; - (ui(J, 5-3) +€i;) = wi(s5,5-) + 8- €
JES;
IFor simplicity - and with no loss of generality - assuming that |S;| = J foreachi € {1,..., N}.

2Denoting the transposed of a vector A as A’.

3

4 CHAPTER 1. QUANTAL RESPONSE FUNCTIONS

and in particular, for pure strategies,
Ui(J, 5-5) = ui(J, 5-3) + €3,

with €; = (€, ..., €¢;,) distributed according to f;.

For each player ¢ and for each possible strategy j, there is a region
Rij(s—i) C R’ such that if ¢; € Rij, then j “looks like” the best
pure strategy to i, that is, formally, @;(j,s_;) > @;(j,s_;) for any
J. The probability measure f; hence induces a probability measure on
{Ri1(5-4), ..., Ris(s-4)}:

def
0ij(5-i) = P(Rij(s-i)) 2/ fi(e)de;.
Rij(s—:)
We can finally define a quantal response equilibrium as a vector o*
such that

o =00)Vie{l,...,n}Vje{1,...,J}.

ij

Intuitively, the quantal response equilibrium is based on the same
rationale of the Nash equilibrium, except that each agent makes some
evaluation error, and by knowing which distribution those error terms
follow, they are able to internalize their (expected) effect on partici-
pants’ behaviour.

1.2 What's behind

Quantal response equilibria converge to Nash equilibria as the variance
of the error term tends to 0.3 They are a useful tool both for selecting
among Nash equilibria, and for studying the “robustness”, or “plausi-
bility” of selected equilibria, by looking at how far they move away from
Nash equilibria as the variance* grows: an equilibrium is made of mixed
strategies combining the given possible pure strategies.

In this work, instead, quantal response functions will be purposely
crafted around predicted Nash equilibria, and this will allow us to see
the “choice” of one or the other as a deviation from that prediction. |
will not discuss in detail what is the economic interpretation of this er-
ror: though the most obvious meaning it can be attributed is the simple
“mistake in pressing the button”, that is certainly not the only moti-
vation behind the development of the new equilibrium concept, which

3Though it may seem intuitive to think that QRE converge to trembling-hand perfect equilibria,
this is not the case, as pointed out for instance by [3].
4Usually denoted with A\: when A — 0, we get the regular Nash equilibrium

1.2. WHAT'S BEHIND 5

well on the contrary has gained importance also for its apparent ability
to more realistically predict the outcome of some games - for instance,
repeated coordination games - suggesting hence that it may better re-
flect a type of rationality that we find “more natural”. | will hence
not focus on the search for quantal response equilibria; | will however
borrow the basic instrument of this equilibrium concept, namely the
quantal response function, to give a shape to deviation from theoreti-
cal predictions (in particular, Nash equilibria) on behalf of players.

Quantal response functions (Uij, in the above formalization) in gen-
eral depend on the error distribution they originate from (for instance,
the widely used logistic quantal response function is the result of choos-
ing an error distribution with cumulative density function

F(z) = e

where v is such that F'(0) = .5). They are however a higher level tool
which already assigns a probability to every possible strategic choice of
the opponents - depending on the probability distribution of other play-
ers’ actions. In this work, instead, the symmetry between agents will
be broken and while some players’ response functions will only depend
on their own errors, some others (often only one) will play deterministi-
cally, by maximizing the expected utility, which internalizes the (known)
probabilistic behaviour of opponents.

This is precisely the meaning that | will give to the term “distrust”:
the expectancy, on the behalf of some given player(s), that some oppo-
nent(s) will not act accordingly to a Nash equilibrium. Similarly, | will
often design decisions as “irrational” insofar as they deviate from those
same theoretical predictions. It is totally evident that the usage of this
term, when intended with this meanings, completely abstains from any
pejorative judgment - well on the contrary, | will present some devia-
tions as “necessary” in order to get the best expected result (given the
particular set of informations/assumptions of the player behind them).

One more technical detail has to be faced: the concepts of quan-
tal response equilibrium and quantal response function are traditionally
conceived as valid approaches in cases where the space of strategies is
discrete. Though generalizations to the continuous case exist, to study
auctions, which luckily are characterized by the fact that variables of
interest range on intervals, | will target the problem simply by intro-
ducing ticks, which will provide, in any situation, a finite number of
choices among which a player can select one. It is important to stress
that my aim is not to study the relevance of tick size, as already done

6 CHAPTER 1. QUANTAL RESPONSE FUNCTIONS

in many existing papers (i.e. in empirical or theoretical measures on
double auction markets): well on the contrary, the tick size will be kept
to a value as little as possible to make its effect negligible.

The concept itself of quantal response functions may seem at first
sight a very poor modelization of irrationality - in the end, this gen-
eral idea can describe such a complex space of strategies that the only
possible way to meaningfully model it is to start from observational
data and in this way construct empirically justified deviations. While |
certainly don’t mean to assert that quantal response functions put the
final word to the question, | will simply adopt the same reasoning that
has motivated the concept of quantal response equilibrium: deviations
are not simply a consequence of some exogenous hidden causes, but
also of the belief that each agent has about competitors.

Translating this idea into my study, which will target mainly the ef-
fect of distrust, not just of “errors”, | will assume that quantal response
functions are not a model of irrationality, but instead a plausible model
of how a particular player may think that his competitors will deviate
from the classical prediction. The reason why | won't adopt the concept
of quantal response equilibrium as a whole is that if a player has distrust
in some opponents’ rationality, it's hard to claim that she will assume
they “feel the same”, in that they also internalize the effect of devia-
tions. More simply, if | expected other players to think rationally and
then possibly make errors, | would internalize them and assume they
do the same, but if instead (as is the case here) | expect other players
to simply make irrational choices, | will not expect them to internalize
them (or any possible response to them, on my or some other agent's
behalf).

1.3 An example

A simple numeric example may clarify the differences between the ap-
proaches. Let us assume that two agents, a and b, enter a first price
sealed bid auction. Each of them attributes a private value, picked from
a uniform distribution on [0, 1], to the object.

e The only symmetric Nash equilibrium is known to be of the form
Ba(v) = Bp(v) = B(v) &f 5. The expected utility for each agent
is also symmetric and is equal to

1.3. AN EXAMPLE 7

P{8(v:) > Bv-)} - (vi = B)) = Pl > v} - o = 7.

e Now let us assume that agents make evaluation errors of the fol-
lowing form: at some moment they must choose between playing
Bi(v) = 5 or Ba(v) # Bi(v). They first build mixed strategies by
estimating the expected revenue of each option, and it is at this
level that the errors happen: denoted with pj, (respectively p,) the
probabilities that b (respectively a) chooses the first option (ob-
viously p, < 1 and p, < 1), and with v, ;(v,p_;) (for i € {a,b},
J € {1,2}) the expected utility of each option, a will not simply
maximize u;, but 4; = u; + ¢; instead, and the decision making
process of b will be perfectly specular.

This time we can hence write:®

P{Bi(vi) > B-i(v_i)} =p_iP {Bz‘(vi) > %} + (1 =pi)P {ﬁi(vi) - U;z}

which gives the following expected payoffs:

U1 (Va, p) =P {B1(va) > By(vp)} - (1 — Bi(va))
=[pva + (1 = p)P{B1(va) > Ba(vs)}
Uq,2(Va, p) =P {B2(va) > By(vp)} - (1 — Ba(va))
=[PP {Ba(va) > Bi(vp)} + (1 = p)va

+ €

- (1= B1(va)) + &
+ €

]+ (1= Ba(va)) + €2

and symmetrically (replacing p, a, b with ¢, b, a respectively) for
the other agent. Given that, the distribution of ¢; generates a
distribution of probability on {1,2}:

P,{1} = dp
€1,62:Uq,1>Uq,2

€1,62:Uq 2>Uqg,1

where F' is the distribution of €1, ¢y

A quantal response equilibrium will be a pair (p,q) such that
q="P,{1} and p =P, {1}.

51t must be noticed that if b plays the “overbidding” strategy, a will have no chance to win the
auction by playing the Nash equilibrium, and vice versa.

CHAPTER 1. QUANTAL RESPONSE FUNCTIONS

e In this work, to model distrust | will assume that a estimates u;
and uy as above, but instead b calculates

up1(vp) =P {B1(ve) > Bi(va)} - (1= Bi(wp)) + &
=Up (1 — ﬁl(vb)) + €1
up2(vy) =P {Ba(vs) > P1(va)} - (1 = Ba(vp)) + €2;
again, the distribution of ¢; induces a distribution of probability on

{1,2}. This probability will be considered by a in the search for
the optimal (pure) strategy.

Chapter 2

Building distrust

The crucial point in the simulation is the construction of the strategy
profile of the agent(s) assuming evaluation errors on behalf of the other
participants.

The study is made through the already mentioned discretization: the
range of the value, which | will always assume (with no loss of general-
ity) being the interval [0, 1], is subdivided into a given number of ticks.
Based on the distribution chosen for the value, each tick gets a finite
probability mass.

This construction must be done deterministically, and not, for in-
stance, via a simulated learning mechanism on behalf of the “smart”
player, since that would imply a very high computational cost - linear in
the number of ticks, the number of players and the number of iterations
of the auction - to keep the variance of results low.

First, the functional form for the expected payoff as function of bid
and private value, as estimated by an agent assuming opponents play
the Nash equilibrium, is constructed: let us call it u(b,). For instance,
in the case of a first price auction with uniformly distributed private
values, we have (see for instance [1]):

(b, z) = (b%)N -,

Then, the distribution of probability of bids is calculated as - intu-
itively (since this is evidently not a real probability, which would other-
wise evaluate to 0 everywhere) - the probability for any given value b
that:

(b, x) = max u(b,)

9

10 CHAPTER 2. BUILDING DISTRUST
where 4(b,) is simply u(b,) +¢€, and €, is our random evaluation error.

More formally, fixed z = =z, in the case in which ¢, is distributed
uniformly on [e_, €], after defining the set

Uy = {V €[0,1] | u(V/,7) > b}, (2.1)

and denoting the indicator function of a set S as Ig, the distribution
of probability can be obtained as

p(b) / R

1
pre- Jo Lo

where since U, is an interval (u is single peaked), containing b for
which u(b) is maximum, then u=*(Uj,) is an interval too,* and hence
we can write:

b+eq 1
p(b oc/ _
S A PR

Remark 2.1. It may be interesting to notice that, with a first order
approximation, this process of assuming that agents make evaluation
errors (under/overestimating the expected output of a given strategy) is
analogous to just assuming that they choose the right strategy but then
make a random (and independent from the private value) error around
that choice. In other terms, since in b we have u’' (l;) = 0, then for
le_,e.] — [0,0] we could equivalently assume that the bid of the agent
simply follows the rule b+ €, with € uniformly distributed. However, this
is instead not possible for non-infinitesimal errors, since the distribution
of € would not be uniform and more importantly would depend upon z,

the private value.

2.0.1 Discretization

In the discrete environment, this translates into the following: there is a
finite number (K) of ticks, regularly distributed at distances of 7 = %
from 07 = 0 to K7 = 1. Let ko,...,kx be (all distinct) indexes in
{0,..., K} such that

u(kor) > u(ky7) > -+ > u(kgT).

I'm making the assumption that the domain of definition of w is only [0,1]. The reason why
| do that is formally not obvious, but derives from the very simple hypothesis that no participant
in the auction will act in such a way that will make him loose wealth with certainty.

11

__t=0__
“““““ R =2
€ ko
+ k1 /\
-— |
kf// \k.Q
/’/ i3 \

e JL________J|_.________ [________/| \’LL

Figure 2.1: The mechanism behind the distribution of probability. Darker zones
increase in a higher measure the probability mass of ticks they “intersect”.

Then for each k € {0,..., K}, | define?

P (k) = Z [u(kiva), w(k:)] O [u(kr) + e ulki) +eg]| - (14 1).

(2.2)
The above intersection is an interval for all 7 such that

u(k;) + 4 > u(ky) + €, (*)

and is empty otherwise. If we denote by k; the biggest index for which
(*) holds, then (2.2) can be rewritten as

k) — {Ozzjwkn b D+) —ulh)) ford <

It is evident, as can be seen from figure 2.1, that p’(k;) has a maxi-
mum in j = 0.

p’ is still not a probability: in particular, its total mass depends on
the particular shape of u. Next step is hence to normalize it, deriving:

Pk)
Zfio P (ki)

This is finally the distribution of probability of the bids for a given
private value. But our “smart” agent does not know the private value of

p(ky) =

2In the sum below, the term wu(kg 1) can appear, which is not defined; we can give it the
value u(kg) + e—, or lower, as this will not affect the analysis in any way.

12 CHAPTER 2. BUILDING DISTRUST

the opponents, and what he really cares about is the aggregate probabil-
ity, that is, all the probabilities seen so far weighted on the distribution
of private values. In the continuous case, this would mean

P(b) = /Olp(a:) dx;

in the discretized framework, this corresponds to

P(k;) = ZT - P (k)

where py,. is calculated fixing & = A7 back in (2.1).

2.1 Summing up

Once the probability that the “smart” player attributes each one of his
opponents is determined, as seen so far, the construction of the strategy
proceeds by:

1. calculating a discretized cumulative distribution function, simply
by summing the mass of ticks ¢, with k lower than a given £/,

2. calculating the cumulative distribution of the highest order statis-
tics, as the simple product of the vectors of cumulative distribution
function (which are one for each player),

3. obtaining the expected gain by multiplying the payoff obtained in
case of winning by bidding a certain value t; by the cumulative
distribution function calculated above for ¢,

4. finding the t; which maximizes the expected gains.

Chapter 3

Private value

Several different types of auctions are used around the world, and iron-
ically the most popularly associated with the term "auction”, the open
English one, is probably the one on which studies on strategic behaviour
have less to say: while several behavioural works have highlighted devi-
ations from theoretical predictions - even striking ones, as in [2] - it is
virtually impossible to make errors once the private value given to the
auction is known with certainty: the optimal strategy - increasing the
bid until it reaches the private value assigned, then stopping - is very
simple and natural.

The other three mechanisms traditionally considered by auction the-
ory are:

e sealed-bid first price auction, which differs from the English one
in the fact that participants don't get any information during the
auction, and don’t have the possibility of filing a sequence of bids:
they just decide for one, and file it,

e sealed-bid second price auction, which is similar to the first price
auction, but designs as the winner not the one filing the highest
offer, but instead the one bidding the second highest value,

e Dutch auction, which is in some way the reverse of the English
one: the price (often tracked by a sort of clock) starts very high
and keeps lowering, until one of the participants accepts, winning
the auction and paying the current price.

The Dutch auction is strategically equivalent to the first price one:
that means, for instance, that an auction house running a Dutch auction
could in principle accept anticipated sealed offers, with an employee of
the house acting as proxy, offering the sum written in the sealed enve-
lope on behalf of the remote participant, and in this situation partici-

13

14 CHAPTER 3. PRIVATE VALUE

pating directly or through the proxy would make virtually no difference.*

So to get a picture of effects of distrust in private value auctions,
we are down to two mechanisms, which will be now separately studied.

3.1 Second price auctions

Second value auctions in the classical (“undisturbed") case are charac-
terized by particularly simple strategies: truthtelling (weakly) dominates
(it is at least as convenient, whatever other participants do - and strictly
more convenient in some cases) all the others:

5*(%‘) = U;.

The dominance automatically implies that this optimal strategy is
unaffected by any possible expected deviation of the other players -
that is, distrust has no effect in this case.

It may be worth mentioning that the effective presence of noise in
other players’ strategies can have important fallbacks on some charac-
teristics of the auction - for instance, it can easily be seen that even a
0-mean white noise applied ex-post to bids can on the one hand increase
expected revenues for the auctioneer, and on the other decrease both
chances of winning and expected gain from a win for players playing
non disturbed strategies. This reflection is however out of the scope
of this work, and moreover general effects of irrationality on auctions
have been already studied quite exhaustively in a number of papers: for
instance [2] interestingly considers the effects of overbidding in eBay
auctions, and the influence of an even small number of overbidders.

3.2 First price auctions

In the case of first price, private value, auctions instead benchmarking
the effect of distrust against classical predictions is not trivial, and will
require the approach described in chapter 2.

Figure 3.1 shows the result of the construction of the “distrusting”
profile with an error term of variance zero - in other terms, of the “trust-

lIn the real word, the important difference between the two mechanisms, which makes the
Dutch auction particularly favourable in situations where speed matters, is the time factor, that |
will simply not consider here.

3.2. FIRST PRICE AUCTIONS 15

n n n
0.0 0.25 0.5 0.75 1.0

Figure 3.1: Expected payoff of possible responses (bids) to different private values,
in an auction with 3 players and “clean” Nash equilibrium strategies (no evaluation
errors).

ing" profile, the Nash equilibrium prediction itself.

In the plot, each line corresponds to a given private value: for in-
stance, the lowest one is the plot of expected payoffs (y axis) in function
of the bid (z axis) when the private value is 0, while the top one is the
same plot when the private value is 10, and all others correspond to
private values of 1, 2, 3. ..

As expected, the maxima of the different profiles exactly correspond to
the Nash predictions: from the picture, in particular, it can be easily
noticed that with a private value of 0 the best choice consists indeed
in playing 0, while with a private value of 1 the maximum is % = NLHUZ».

Figure 3.2 shows the next step: it represents the strategy profile
for an individual that attributes to opponents an ex post error, that
is, assumes that they do find the best possible response, but then their
effective bid is perturbed. The error term follows an uniform distribution
of width 0.353 centered in 0. The result is similar, but the noise has
the effect to smooth the expectation profiles.

The interesting point is the difference between the kind of error that
is assumed in quantal response functions and a bare noise around the
first best bid, as in figure 3.2: since the (clean) expected payoffs func-
tion is not symmetric around its peak (intuitively, it grows “slowly”
and decreases “faster”, as can be seen in figure 3.1), the effect of an
evaluation error will not be symmetric neither, but instead will shift the
distribution of probability toward alternatives which have a higher ex-
pected value, and those are more present on the left than on the right

16

0.4

CHAPTER 3. PRIVATE VALUE

—0.61

0.5

0.75 1.0

Figure 3.2: The same as above, but now internalizing the expected error of the
others 2 players, which is still not structured as an evaluation error, but simply an
error term distributed uniformly on an interval of width 0.353, applied after the

choice of the bid.

L
0.25

n
0.5

n
0.75 1.0

Figure 3.3: Here, the (expected) error finally intervenes at the step of evaluating the
different options, in the form of an uniformly distributed error term: the difference
from the above plot is evident in the fact that the expected bids, and hence the
shape of the expected payoffs, are shifted to the left.

3.2. FIRST PRICE AUCTIONS 17

n L L n
0 100 200 300 400 500

Figure 3.4: The two above plots compared. Since the effect of the shift to the left
is due to lower expected bids on the behalf of opponents, the expected net relative
benefit is positive, as is suggested by the higher peaks which can be seen on the
left.

of the peak.

It must be observed that the difference between the two error con-
cepts does not consist simply in a higher or lower expected influence
on the final bid choice of “naive” agents: the value 0.353 in figure 3.2
is chosen precisely in order to compare two error distributions of bids
which have the same expected deviation from optimal bid. Indeed, with
e uniformly distributed on [—0.1,0.1], @ defined as @(v) = u(v) + €,
and §'(v) = max, u(v) we get that

E[|5'(v) = B(v)[] = 0.088

which is precisely the standard deviation of a uniform distribution of
width 0.353.

3.2.1 The strategy profile

| now proceed to the simulation of an auction in which one participant
feels distrust toward the others, that is, he plays with the strategy just
described.

The very first simulation ran simply shows that distrust does not
pay: if others players do play according to classical predictions, the
player that assumes noise in their actions gets an overall damage from
this assumption (figure 3.5).

18 CHAPTER 3. PRIVATE VALUE

Figure 3.5: Results of a simulation with 5 agents, of which 4 play according to Nash
equilibrium and one - the last - plays attributing to the others an uniform error of
width 0.353 around the Nash equilibrium. Plotted are the cumulative payoffs after
running the auction ten thousands times.

2000

1500

1000 |

500 -

Figure 3.6: Results of the same simulation, where now however the first 4 players
indeed make the error which the fifth attributes them.

3.2. FIRST PRICE AUCTIONS 19

1000

800

600 |

400 -

200 -

Figure 3.7: The same as above, but here the “smarter” player does not internalize
the noise, and plays the ordinary Nash equilibrium.

Figure 3.8: A closer comparison of the outcome for the “smart” player from Figure
3.6 (left) versus playing according to the Nash equilibrium as in Figure 3.7 (right).

20 CHAPTER 3. PRIVATE VALUE

Subsequent figures, and in particular 3.8, instead show that, as we
expect, the positive effect of distrust can be very relevant if the oppo-
nents do make the error which is attributed to them, as can be seen

from figure.

Chapter 4

Rebuilding trust

Nash equilibrium has been often criticized as being based on too strong
assumptions, and in particular on a form of rationality that assumes per-
fect symmetry and availability of knowledge about all players’ strategies.
One of the most popular defenses of the concept of Nash equilibrium
is however that, though the strong hypothesis may make it, in many
situations, an implausible “point of agreement” between agents that
meet occasionally, it is much more realistic if seen as the point of con-
vergence of an iterated game.

Let us call 5y the theoretical Nash equilibrium prediction, and Bo
the same strategy, perturbed with the evaluation error as described in
Chapter 2. Let /31 be the best response (introduced in 3.2) in an auction
where all other agents are assumed to follow BO. Let 3,41 be the best
response in an auction where all other agents are assumed to follow 3,,.}

Those strategies can be interpreted as an iterated construction of
trust, in the following sense: let us assume that when they meet, n
“smart” agents simply do not trust each other, and think each op-
ponent will play 3y. After the first auction is ran, they discover that
instead each one played /3;. So if the same agents happen to meet again
in another auction, they may decide to act according to 5. Again, as-
suming that every agent updates his belief after every auction, based
on what he has observed on the behalf of opponents, after n auctions
all agents will play £,,. It is hence natural to be curious about what S
looks like.

1The numerical construction of the various 3; for i > 1 is not described, as it is much simpler
than for 81, because it is the best response to a deterministic strategy, and hence, knowing the
strategy profile in function of private value, it is relatively easy to reconstruct the CDF and finally
build a strategy as described in section 2.1.

21

22 CHAPTER 4. REBUILDING TRUST

02
0.1 /‘4,?“ o /!

b0 0.25 05 0.75 10 R 0.25 05 075 1.0

Figure 4.1: Here is represented, in a first price private value auction with 3 (on the
left) and 5 (on the right - notice the different scale) players, 3;, for various values
of i. By is the straight line (since the Nash equilibrium involves a linear response
function). f3; is the lower, green, one, (2 is the one red above, and then come f5
(light blue) and B4 (purple). Though as i increases the strategies show higher and
higher variations, due to the increase of calculations errors, it seems that a form of
convergence is observed, which however does not tend toward the Nash equilibrium.

The answer, which can be observed from Figure 4.1, may be surpris-
ing: even in our case of an homogeneous evaluation error, as n increases
indefinitely, 3,, does not converge to 3y, the Nash equilibrium: it tends
instead to stay lower. In particular, while the sharpness of higher order
profiles is to be attributed to the discreteness of the numeric process
involved, the evident effect is that assuming the presence of initial dis-
trust, high level mentalizing and/or learning will not bring the situation
back to “normality”, to be intended as Nash equilibrium; or if such a
convergence will take place, it will be extremely slow.

For comparison, 4.2 represents the result of the same study starting
from an ex post error applied starting from the best bid. We can see
that the effect is less relevant, but still present: high order strategies
would seem to converge, but not on the Nash equilibrium-compliant
strategy, and since we know the latter is the only symmetric equilibrium,
they can not converge to any other functional form. This is even more
relevant when we recall, from figure 3.4, that, differently from the case
of quantal response functions, ex post noise obviously does not imply
a change of the expected value of the bid coming from the untrusted
opponent.

23

N

I~ i
f//ﬁ _

"o 025 05 075 1.0 o 0.25 0.5 0.75 10

Figure 4.2: Here, 5 is calculated assuming that (homogeneous, expected value
0) noise is applied ex post to the best possible bid, and the other strategies are
calculated from 31 as in the previous figure. Again, the left plot considers an
auction with 3 participants, the right one with 5.

24

CHAPTER 4. REBUILDING TRUST

Chapter 5

The contest

So far, the target has been on studying optimal adaptation of “smart”
players to clean situations - such as the one in which all other players
are playing a given strategy, with an error of a given form.

In this final part, | will consider the results of a “contest” in which
strategies seen so far are compared among them by simply playing in
an automatized tournament. Though the idea is similar to what can
be found, for instance, in [4], given the higher sensibility to the number
of participants that is intrinsic in virtually any bidding strategy (which
in turn comes from the fact that there is - at least in the framework
studied so far - a single object which can be acquired by participants)!
it would not be interesting to put a high number of automated players
in a single, repeated, auction: instead the approach taken is to run a
high number of auctions, characterized by the same number of agents,
each time extracted from a larger pool of agents.

This does not imply dropping the evolutionary approach used by
Rust, Palmer and Miller in their paper - namely, agents with successful
strategies become more and more present, while those with less success-
ful ones drop out, and this will be reflected in the strategy distributions
of auctions that are run. More precisely, in their 1992 paper they iden-
tify a trader’s fitness with the amount of capital owned, which evolves
as

Ki(t) = Ki(t — 1) + () — Si(t)

where S;(t) is the total value of shares received by player i at the

1By the way, aside from the theoretic reasoning, there is the empirical observation that in reality
double auction markets can easily see hundreds of participants not just taking part , but actively
participating, in a single long-lasting auction market; instead auctions last a finite time and are
usually ran ad-hoc for any single item to be sold.

25

26 CHAPTER 5. THE CONTEST

beginning of game ¢, I1(¢) is the total value of assets owned at the end
of that same game and K;(t) is evidently the stock of capital. They
then let the fraction p,(¢) of traders of type j be defined as

K@)
p;(t) = ST KA (5.1)

5.1 Adapting to auctions

While | will in line of principle take a similar approach, the limited
number of agents that can reasonably take part in an auction without
diluting excessively the variance and significance of observable results
leads me to consider each ¢ not as a single auction but instead as a
set of virtually contemporaneous auctions. Each player, at each time,
participates in a randomly chosen one, and the population share for
each type of players is determined as in (5.1) - the whole approach is
simplified by the fact that players don't have any status variable asso-
ciated with them: capital will be associated only with strategies, and
players will, at each time, be assigned strategies according to it.

One point, however, needs particular attention due to the subject of
observation being auctions instead than double auction markets: the
fact that they are not zero-sum games. In the “evolutionary tourna-
ment” described in [4], there is no intrinsic motivation why we should
expect that as a given strategy becomes more or less popular, it be-
comes respectively more or less powerful: well on the contrary, we can
see a saturation effect which attenuates the growth of more aggres-
sive and successful strategies as they become monopolistic. Instead, in
the case of auctions, where the profit is almost always (at least in the
majority of studied strategies) positive (or null), the simple fact that a
strategy is, at a given moment, more popular can mean that, on a parity
of strategic behaviour, its expected growth for periods to come is higher.

The solution adopted to face this problem is to transform auctions
in zero-sum games: given an auction, let ¢ be the highest bidder, b,
and v; respectively the bid and private value of the generic bidder i €
{1,...,N}. Then, the final payoff of the auction is defined as:

0 otherwise '

—%%) + u(z) _U; — bg n —Uigbi ifi = E
2 2N

all addends are halved so that the net aggregate expected impact on

5.2. THE RESULTS 27

stocks of a given auction is the same as in non normalized ones. This is
done only for the purpose of simplifying comparison among normalized
and non normalized in the next section, not for intrinsic motivations.

For the sake of clarity, it must be observed that nevertheless there
can (and will) very well be scale effects, since single strategies may
perform well or poorly depending on the composition of the popula-
tion of auction participant. In particular, “high order” strategies which
were defined in chapter 4 are constructed precisely to behave in the
best possible way against a given kind of opponent. The aim of the
compensation mechanism that | just presented is only to reduce sensi-
tivity to low initial (random) perturbations. This can be motivated for
the sake of realism - the situation of a market that is exploding and
in which acting now has much more influence than acting tomorrow
is possible, but we would probably not call it “standard” - but is even
more important for reproducibility (low variance of final results) of the
simulation itself.

5.2 The results

Figures 5.1 to 5.5 show the outcome of simulations ran with the “clean”,
Nash equilibrium-compliant, strategy, denoted as f3, the “erroneous”
one, denoted with [y, and higher order ones presented in chapter 4,
introduced one at a time.

Given the arguments exposed in the above section, it may be strik-
ing to observe, from the comparison of plots of simulations ran with
and without normalization, that the former tend to feature apparently
similar qualitative phenomena to the latter (though | will focus later on
the important differences), but at a much faster pace.

As seen in the previous section, the reason can not be that the net
aggregate impact of each auction is higher in one case than in the
other. The explanation must be searched instead in the fact that with
normalization, auction participants which do not win erode their stock,
hence accelerating the decline of strategy they follow. In fact, dynam-
ics of normalized simulations are very sensible to starting stock quotas:
while in the figures 5.1 and following it was set to 100 (recall that the
private values in each auction range from 0 to 1), higher values slow
down arbitrarily the observed phenomena. The curvature of the trajec-
tories also shows the effect of this chain reaction: the lower stocks go,

28 CHAPTER 5. THE CONTEST

the higher is the impact of a single loss auction. But it is important
to stress that this does not mean that less popular strategies will have
more difficulty in winning: it just means that if they loose, the effects
will be more evident (and obviously vice versa for more popular ones).

However, another difference between the two kinds of setup deserves
much more attention: in all normalized contests, the “clean” (Nash
equilibrium-compliant) strategy is the clear winner, while in the others
higher order strategy mostly take the lead.? The interpretation of this
difference is facilitated by observing the behaviour of non-highest order
strategies in the last 4 contests: it is evident that, as could be imag-
ined, high order strategies remain very effective only as long as lower
order ones remain present (and even when the presence of the latter
declines, they tend to decline very slowly), then have a sharp decrease
in efficiency. In non-normalized strategies, where the initial moments
are particularly important, having acquired a predominant position fa-
cilitates them in growing even more, and this is the reason, together
with the fact that inferior strategies never disappear completely, why
they result as the best.

In fact, figure 5.2, left, shows the only non-normalized contest in
which the higher order strategy does not immediately perform better
than the clean one.

While the result itself is, as already stated, very dependent on the pa-
rameters chosen - namely, the initial stock of 100 - there is an interesting
message that we can get by comparing it with the subsequent figures,
which feature that same parameters: higher order strategies do not just
get an advantage from the presence of bidders with the “one step lower”
strategy, but in general they also perform better, with respect to the
clean one, if there are more “modified” ones. We could already have an
intuition of this fact by observing, in Chapter 4, that those strategies
are relatively similar among them, hence may at least partially share the
capacity to exploit given situations.

This adds other, slightly more general, evidence that distrust is a self-
preserving mechanism.

Simulation exposed in figure 5.6 finally differs from the others in
the fact that it does not feature the whole spectrum of strategies, but
instead a particularly prominent population of “order 3 thinkers”, to-
gether with “order 4" and “order 0" ones. The fact that lines associated
with B3 (one can hardly be seen, because the other superposes to it)

2Those qualitative results came out in all repetitions of the simulations.

5.2. THE RESULTS

0.6

— b

T

200

100 600 800 1000

0.6

0.0

200

100 00 500 1000

29

Figure 5.1: First contest: on the right, the normalized version.

Figure 5.2: Second contest.

200

100 600 800 1000

— 5
08 — B
0.6
04
02
00
o 200 00 500 00 000
1
— K
08 —
— A
06
04
0.2
\
0 \
] 00 00 500 500 1000
L0
— 5
08 — B
— B
— B
06
04
02
0.0 -
o 200 100 00 00 000

Figure 5.3: Third contest.

CHAPTER 5. THE CONTEST

08 10
— b
08 — B
— B
— B
06
— B
0.4
02
00g 300 0 500 00 000 00 00 &0 w0 000
Figure 5.4: Fourth contest.
0.8 1.0
— B — A
o7 . .
— b 08 — B
06 .
— 5 — B
05 — B — B
06
— B — B
04 .
b1 Ba
0.3 04 /
0.2 /ﬂ
0 “l 200 400 600 800 1000 0 “Y) - 200 1400 600 800 1000

Figure 5.5: Fifth contest.

5.2. THE RESULTS

(] 200 100 600 800

Figure 5.6: Contest with higher 83 population share.

Lo

0.6

31

200

Bo

100

600

800

1000

always decrease does not come as a surprise: what is interesting is the
behaviour of By and [, which confirm even more clearly the observa-

tions made on the other contests.

32

CHAPTER 5. THE CONTEST

Appendix A

The code

This appendix contains the code behind the simulations and drawings. It consists
of 5 files:

1. strategies.py, which contains the construction of all strategic profiles,
2. auction.py, in which the auction process is set up,

3. contest.py, which builds the evolutionary contest of chapter 5,

4. utils.py, containing few helper functions used in the other modules,
5. buildfig.py, a script that creates all the figures present in this study.

All the code is written in the Python programming language, and to run it the
libraries scipy and sympy are required.
Moreover, the script buildfig.py needs the matplotlib library to create plots.

A.1 strategies.py

—+— coding: utf—8 —%—
from __future__ import division
from sympy.interactive import n, x, y, z, integrate, N
from scipy import array, prod, trunc, zeros, arange, average
from utils import intersection , frac_simpl
from random import choice
from pylab import plot
class Debug(object):
def __call__(self, who, what):
setattr(self, who, what)
deb = Debug()

N_TICKS = 500
TICK.WIDTH = 1 / N_TICKS

class Strategy(object):
calculated_dists = {}

From Krishna, pag. 18

FPA_expected = z**n % (x—z) — integrate(y**n, (y, x, z))
However, that was in terms of \beta(z)

33

34

APPENDIX A. THE CODE

FPA_expected = FPA_expected({z : z * n / (n=1)})

val_CDF = {}
val_freq = {}
deviations = {}
means = {}

players_n = None
deterministic = True

def

def

def

def

def

__init__(self, xxkwargs):
for i in kwargs:
setattr(self, i, kwargs[i])

reset(self, xxkwargs):
if 'players_n' in kwargs:
self.players_.n = kwargs['players_n ']

profile (self):
if not self.deterministic:
raise NotlmplementedError

prof = zeros(N_TICKS)
for i in range(N_TICKS):

prof[i] = self(i * TICK.WIDTH)
return prof

build_CDF (self):
""" For non—deterministic strategies, this is only an approximation.

CDF = zeros(N_TICKS)
prof = self.profile()

prof is sorted (since the strategy is increasing)
cursor =0
for i in range(N_TICKS):
while cursor < N_TICKS and prof[cursor] < i * TICK.WIDTH:
cursor +=1
if cursor = N_TICKS:
CDF[i] =1
else:
Linear interpolation:
CDF[i] = (cursor — 1 + (i % TICKWIDTH — prof[cursor — 1])\
/ (prof[cursor] — prof[cursor — 1])) = TICKWIDTH

return CDF

build_error_distr(self, expected, error.CDF, tick):
try:

error_distrs = self.calculated_dists[expected, error_.CDF]
except KeyError:

error_distrs = {}

self.calculated_dists [expected, error.CDF] = error_distrs

try:

all_deviations = self.deviations[expected, error_.CDF]
except KeyError:

all_deviations = self.deviations[expected, error.CDF] = {}

try:
deviations = all_deviations [N_TICKS]
except KeyError:
deviations = all_deviations [N_.TICKS] = zeros(N_TICKS)

try:

all_means = self.means[expected, error.CDF]
except KeyError:

all_means = self.means[expected, error.CDF] = {}
try:

means = all_means [N_TICKS]

except KeyError:

A.1. STRATEGIES.PY 35

means = all_means [N_TICKS] zeros(N_TICKS)
try:

return error_distrs[frac_simpl(tick, N_TICKS)]
except KeyError:

pass
try:
error_extrema = error_.CDF .extrema
except AttributeError:
error_extrema = error.CDF .extrema = self.CDF_extrema(error_.CDF)

val = tick = TICK.WIDTH

players_.n = self.players_n

exp-val = zeros(N_TICKS)

for bid_tick in arange(N_TICKS):
bid = bid_tick * TICK.WIDTH

Expected utility of playing "bid” with value "val”:
exp-val[bid_tick] = N(expected({n:players_.n, x:val, z:bid}))

deb('exp_val’'+str(tick), list(exp-val))

nash_eq-exp-val = max(exp-val)
best_resp = list(exp-val).index(nash_eq_exp._val)
print "best resp”, best_resp
val_pairs = filter((lambda x : x[1] + error_extrema[l] > nash_eq-exp-val 4+ error_extrema [0]),

[(t, exp-val[t]) for t in range(N_TICKS)])
val_pairs.sort(cmp=(lambda x, y: ecmp(x[1], y[1])))
tick_distr = zeros(N_TICKS)

List of already (partially) processed ticks:

prev = []
prev.append(val_pairs.pop())
i=1
while val_pairs:
cur = val_pairs.pop()

for j in prev:
tick-mass = (prev[—1][1] — cur[1]) / i
tick-distr[j[0]] += tick_-mass
prev.append(cur)
i +=1

for j in prev:
tick_distr[j[0]] += (prev[—1][1] + error_extrema[l] — nash_eq_exp_val — error_extrema[0]) /

Normalize so that it is a probability
tick_distr *= 1 / sum(tick_distr)

Calculate standard deviation (from first best, not from mean!):
deviation = sum([tick_distr[i] % abs(i—best_resp) * TICKWIDTH for i in range(N_TICKS)])

Calculate mean:
mean = sum([tick_distr[i] % i % TICKWIDTH for i in range(N_TICKS)])

deb('start’'+str(tick), list (tick-distr))
deviations[tick] = deviation

means[tick] = mean

error_distrs[frac_simpl(tick, N_TICKS)] = tick_distr
return tick_distr

def cumul_error_distr(self, expected, error.CDF):

try:

error_distrs = self.calculated_dists[expected, error_.CDF]
except KeyError:

self.calculated_dists[expected, error.CDF] = error_distrs = {}

try:

36

def

APPENDIX A. THE CODE

return error_distrs [N_TICKS]
except KeyError:
pass

If we're here, it wasn't cached. Let's build it.

bids = zeros(N_TICKS)

for tick in range(N_TICKS):
The probability correlated to each private value, weighted with
the probability of each private value.
bids += TICK.WIDTH x self.build_error_distr(expected, error_.CDF,

deb('start ', list(bids))
deb('stdev', self.deviations[expected, errorc.CDF][N_TICKS])
return bids

CDF_extrema(self , CDF):
if CDF(0) < 1:
max._cursor = 2
while CDF(max_cursor) < 1:
max._cursor *x= 2
else:
max_cursor = —2
while CDF(max_cursor) >= 1:
max._cursor x= 2
max_cursor /= 2

if CDF(0) > 0:
min_cursor = —2
while CDF(min_cursor) > 0:
min_cursor %= 2
min_cursor /= 2
else:
min_cursor = 2
while CDF(min_cursor) <= 0:
min_cursor %= 2

space = max(abs(min_cursor), abs(max_cursor))
Let's position the cursor at the right extrema of the interval

containing the value we’'re searching:
if min_cursor < 0:

min_cursor = 0
if max_cursor < 0:
max_cursor = 0

Let's do a binary search in that interval:
while space:

space /= 2
if CDF(max_cursor — space) >= 1:
max_cursor —= space

if CDF(min_cursor — space) > O0:
min_cursor —= space

return min,cursor, max_cursor

class Truthful (Strategy):
The simplest strategy: bid your signal

def

__call__(self, value, xxkwargs):
return value

class FPNashHomogeneous(Strategy):
(2.4) in Krishna, with X_i being homogeneous
Notice the real space from which values are extracted doesn’'t matter:

the agent will play assuming his signal is the highest.
def __init__(self, start=0, xxkwargs):

Strategy . _-init__(self, sxkwargs)

self.start = start

self.noise = None
def __call__(self, signal, =xxkwargs):

if not self.players_n:

self.players_.n = len(self.auction.players)

Given that "signal” is the highest, the expected value of the second

tick

)

A.1. STRATEGIES.PY 37

highest is:
bid = (self.players.n — 1) / self.players_.n * signal
if self.noise:
bid += self.noise()
return bid

class FPNashHomogeneousNoisy (FPNashHomogeneous):

deterministic = False
def reset(self, xxkwargs):
if 'noise’ in kwargs:
self.noise = kwargs[' noise ']

class FPNashHomogeneousError (FPNashHomogeneous):

deterministic = False
def __init__(self, xxkwargs):
FPNashHomogeneous. __init__(self , xxkwargs)

self.exp = self.FPA_expected

def reset(self, players_n=10, error_.CDF=None, xxkwargs):
if not error_.CDF:
raise

self.error_.CDF = error_.CDF
self.players_.n = players_n

def __call__(self, value, xxkwargs):
if not self.error_.CDF:
return FPNashHomogeneous. __call__(self, value, sxkwargs)

val_tick = int(value / N_TICKS)

if val_tick not in self.val_.CDF:

distr = self.build_error_distr(self.FPA_expected, self.error.CDF, val_tick)

deb('distr ', distr)
distr_.CDF = [0]
for tick in distr:
distr_CDF .append(distr_.CDF[—1] + tick)
distr_.CDF .pop(0)
distr_.CDF .append(1)

self.val_.CDF[val_tick] = distr_.CDF
self.val_freq[val_tick] = []

0

in arange(0, 1, .01):

i
while i > distr_.CDF [cur]:
cur +=1

cur
for

self.val_freq[val_tick].append(cur)
return choice(self.val_freq[val_tick]) / N_TICKS

def profile(self):
""" This strategy is nondeterministic; here, we return as " profile” the
expected value of the response to a given private value.”"”
assert self.error.CDF
self.cumul_error_distr(self.FPA_expected, self.error_.CDF
return self.means[self.FPA_expected, self.error .CDF][N_TICKS]

class FPNashBestResponseNumeric(Strategy):
Initialized with an (n_players—1)—uple of strategies, the distribution of
values and (possibly) the distribution of signals (w.r.t. values), it
calculates the best response numerically.

def reset(self, players_n=10, error_.CDF=None, noise_shape=(lambda x : x==0),
self .N_TICKS = N_TICKS
self . TICKWIDTH = TICK.WIDTH = 1 / N_TICKS
self.players_.n = players_n

noise_ticks = int(noise_lenght // TICK.WIDTH)
We must be sure it's an odd number:
noise_ticks += 1 — noise_ticks % 2

noise_lenght=.2, xxkwargs):

38

Noise shape (sum = 1, odd lenght, the middle is '

Homoge
noise_amp

noise = array([noise_shape((i — noise_ampl) * TICK.WIDTH) for i in

APPENDIX A. THE CODE

"no error”):
neous of total width 9 ticks

| = noise_ticks // 2

range (

Discrete distributions:
distrs = []

n_antagon

ists = players_.n — 1

for antagonist in range(n_antagonists):

strate

Homogeneous distribution of value (FIXME: add

ticks
strat

Eval
FIXM

strat = [strategy(TICKWIDTH x tick) for tick in

gy = FPNashHomogeneous(players_.n = players_n)

signals != values):
= array([TICK.WIDTH] % N_TICKS)

= zeros(N_TICKS + 1)

uate strategy:
E: fix things (probability mass) with looking at ticks+l

if error.CDF:

else:

bids = self.cumul_error_distr(self.FPA_expected, error.CDF)

bids = zeros(N_TICKS)

fo

r tick in range(len(ticks)):
Evaluate strategy:

interested_tick = int(strat[tick] // TICK.WIDTH)

What follows is based on the assumption that strategies
will always be increasing.
while interested_tick * TICK.WIDTH <= strat[tick +1]:
Calculate the intersection between intervals
[interested_tick , interested_tick+1] and
[strategy[tick], strategy[tick+1]]
inters = intersection(interested_tick = TICK.WIDTH,
(interested_tick + 1) * TICK.WIDTH,
strat[tick],
strat[tick+1])

assert inters >= 0, (inters, interested_tick * TICK.WIDTH,
(interested_tick+1) * TICK.WIDTH,
strat[tick], strat[tick+1])

bids[interested_tick] += ticks[tick] = inters /\

(strat[tick + 1] — strat[tick])

interested_tick 4+=1

ticks = bids

deb("ticks ', list(ticks))

noisy = array([0.0] % N_TICKS)

Distribution of signal (a sort of discrete convolution):

for tick in range(len(ticks)):

C

ut noise that would go outside of the value distribution:

useful = (max(0, noise_.ampl — tick),
min(len(noise), len(ticks) — tick + noise_ampl))
print "useful”, noise[useful [0]: useful [1]]
Normalize so that it still is a distribution

scaling = 1/sum(noise[useful [0]: useful [1]])

Apply noise:

start = max(0, tick — noise_ampl)

end = min(len(ticks), tick + noise_ampl + 1)
for i in range(end — start):

ticks =
deb (' noi

noisy [start+i] += ticks[tick] x noise[useful [0] + i] * scaling

noisy
sy ', noisy)

noise_ticks

range(len(ticks) + 1)]

)]

)

A.2. AUCTION.PY 39

CDF = [0]
for tick in ticks:
CDF.append(CDF[—1] + tick)
CDF. pop (0)
distrs .append (CDF)
self.build_cum_distr(distrs)
def reset_from_CDF(self, CDF):

""" Accept a list of CDFs and build the best response function to them.
self.build_cum_distr (CDF)

def build_cum_distr(self, distrs):
CDF of highest bid:
try:
self.cum_distr = array([prod([CDF[i] for CDF in distrs]) for i in range(N.TICKS)])
except IndexError, msg:
print distrs
raise IndexError, msg
deb('cumul’, self.cum_distr)

def __call__(self, signal):
winning_payoff = array ([signal — TICK.WIDTH % tick for tick in range(N_TICKS)])
deb('if_win ', winning_payoff)
expected_payoff = winning_payoff % self.cum_distr
deb ('expected ', expected_payoff)

best_choice = list (expected_payoff).index(max(expected_payoff))

return best_choice * TICK.WIDTH

def test(self, signal=.5, n_antagonists=10, error_.CDF=(lambda x : 10%(x+.05)),
noise_shape=(lambda x : x==0), noise_lenght=.2):
If everything works fine, then when there is no noise this should just
return the Nash Equilibrium:

res = self(signal, n_antagonists=n_antagonists, noise_shape=noise_shape,
noise_lenght=noise_lenght)

print "n_ant”, n_antagonists+1

res2 = FPNashHomogeneous(players_n=n_antagonists+1)(signal)

print "error of”, res—res2

A.2 auction.py

from distributions import =
from random import choice

class Auction(object):
def __init__(self, mechanism='FPA’, evaluation='private ',
value_distribution=Homogeneous(0, 1),
signals_distribution=Homogeneous(0, 0
self.mechanism = mechanism
self.evaluation = evaluation
self.value_distribution = value_distribution
For now, non—noisy signals:
self.signals_distribution = signals_distribution
self.players = []
self.debugging = False

)):

def add_player(self, strategy):
self.players.append(strategy)

strategy.auction = self

def run(self):
self. _players_.n = len(self.players)

values = self.extract_values|()

40 APPENDIX A. THE CODE

bids = self.ask_bids(values)
payoffs = self.payoffs(values, bids)

return payoffs

def extract_values(self):

if self.evaluation = 'common':
Determine real value:
values = [self.value_distribution ()] * self._players_n
else:
Reshuffle for each player:
values = [self.value_distribution() for i in range(self._players_n)]

return values

def ask_bids(self, values):
""" Players interplay.”"”
players_.n = len(self.players)

self.debug(values)

Determine signals:

signals =

for agent in range(players_n):
Distributions must accept the optional parameter "around”:
signals.append(self.signals_distribution(around=values[agent]))

"Ask” for bids:
bids = []
for i in range(len(self.players)):
For now, FPA:
bids.append(self.players[i](signals[i]))
print bids

return bids

def payoffs(self, values, bids):

highest = max(bids)

print highest
print bids
print self._players_n
winners = filter((lambda i : bids[i] = highest), range(self._players_.n))
Solve possible ties:
winner = choice(winners)
payoffs = [0] * len(values)
if self.mechanism = 'FPA":
payoffs[winner] = values[winner] — bids[winner]
elif self.mechanism = 'SPA":
self.debug("non—winners”, filter((lambda b : b != highest), bids))
second_highest = max(filter((lambda b : b != highest), bids))
self.debug("second_highest”, second_highest)
payoffs[winner] = values[winner] — second_highest
print payoffs

return payoffs

def debug(self, xargs):
if self.debugging:
for arg in args:
print arg,
print

A.3 contest.py

#! /usr/bin/python

A.3. CONTEST.PY 41

from __future__. import division
from auction import Auction

from utils import AuctionCounter
from random import choice, randint
from scipy import array, average

def contest(strategies , pls_per_auction, iterations=1000, normalize=False):
strat_n = len(strategies)

The number of contemporaneous auctions:

cont_auct = 10
total_players_.n = pls_per_auction * cont_auct
The stock "owned” by each strategy — all the same, at start:

stock = array([100] * strat_n)

¢ = AuctionCounter ()
c.reset(iterations , ticks=100)

This records stock time series for each strategy:
historical = []

while c():
Here starts a given "time” t.
players = []

Inside a given time unit, payoffs are remembered by strategies:
for strategy in strategies:
strategy.payoffs = 0

total_stock = sum(stock)
stock_percentages = array(stock) / total_stock
historical .append(array(stock_percentages))

Each "place” in an auction corresponds to a given percentage:
price =1 / total_players_n

Each strategies "buys” all places it can afford:

for i in range(strat.n):
places = stock_percentages[i] // price
players.extend([strategies[i] for j in range(int(places))])
stock_percentages[i] = stock[i] % price

Remaining strategies are attributed to "best offerers”:

while len(players) != total_players_n:
best_offer = max(stock_percentages)
best_offerers = filter((lambda i : stock_percentages[i] = best_offer),

range(strat_n))
i = choice(best_offerers)
players.append(strategies[i])

Now players are chosen, let's put them into auctions:
for auct in range(cont_auct):

a = Auction('FPA")

for i in range(pls_per_auction):
extraction = randint(0, len(players) — 1)
player = players.pop(extraction)

a.add_player(player)
payoffs = a.run()
Attribute payoffs
if normalize:
opportunity_cost = average(payoffs) / 2
payoffs = array(payoffs) / 2
else:
opportunity_cost = 0
for i in range(pls_per_auction):
a.players[i]. payoffs += payoffs[i] — opportunity_cost

for i in range(strat_n):
stock[i] += strategies[i]. payoffs

42 APPENDIX A. THE CODE

return historical

def demo():
from strategies import FPNashHomogeneous, FPNashBestResponseNumeric,

strtgs = []

p = FPNashHomogeneous ()
p.reset(players_n=5)

strtgs.append(p)

p = FPNashHomogeneousError ()

error.CDF = (lambda x : 20%(x+.025))
p.reset(players_.n=5, error_.CDF=error_CDF)
strtgs.append(p)

p = FPNashBestResponseNumeric ()
p.reset(players_.n=5, error_.CDF=error_CDF)

strtgs.append(p)

p2 = FPNashBestResponseNumeric ()
p2.reset_from_CDF([p.build-.CDF()]*4)

strtgs.append(p2)

p3 = FPNashBestResponseNumeric ()
p3.reset_from_CDF([p2.build_.CDF()]*4)

strtgs.append(p3)

p4 = FPNashBestResponseNumeric ()
p4.reset_from_CDF([p3.build_.CDF()]*4)

strtgs.append(p4)
return contest(strtgs, 5)

if __name__. = '__main__

demo ()

A.4 utils.py

from scipy import sqrt

def intersection(a, b, c, d):
""" Positive: lenght of intersection of [a,b] and [c,d].
Negative: opposite of their distance.”””
return min(b, d) — max(a, c)

def frac_.simpl(a, b):
Return the integer ratio a/b simplified.

assert(b >= a
assert b % 1 =a % 1=0, "%d/%d" % (a, b)

Euler:

0T -0 0 T

soT
=
o

p%q
q
r

return a/p, b/p
class AuctionCounter(object):

def __init__(self):
self.count = 0

FPNashHomogeneousError

A4. UTILS.PY 43

def

__call__(self):
self.count 4= 1
if not self.count % self.ticks:
print "%d of %d” % (self.count, self.auct_iterations)
return self.count <= self.auct_iterations

reset(self , auct_iterations , ticks=1000):
self.auct_iterations = auct_iterations
self.count =0

self.ticks = ticks

44

APPENDIX A. THE CODE

Bibliography

[1] V. Krishna. Auction theory. Academic press, 2009.

[2] U. Malmendier, A. Szeidl, UC Berkeley, and N.U.C. Berkeley. Fishing for Fools.
Technical report, Citeseer, 2008.

[3] R.D. McKelvey and T.R. Palfrey. Quantal response equilibria for normal form
games. Games and Economic Behavior, 10(1):6-38, 1995.

[4] J. Rust, R. Palmer, and J. Miller. Behaviour of trading automata in a computer-
ized double auction market. The Double Auction Market: Institutions, Theories,
and Evidence, pages 155-198.

45

