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Those are the notes I took during the DEFAP 1 course of Mathematics tought
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They’re certainly full of mistakes. I guess the reader will be mature enough to
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2me@pietrobattiston.it

1



02/11/2010

1 Analysis in the Euclidean space

1.1 Derivatives

Given a function f from U ⊂ R (with U , the domain, open) to R, we can draw its
graph and imagine the tangent in some point.

x

y

How to calculate how much “steep” is f in some point? It’s the limit

lim
h→0

f(x+ h)− f(x)

h
= f ′(x) =

df

dx
(x)

(if this limit exists). This is the derivative, the slope of the tangent line at the
point (x, f(x)).

The derivative may exist only for some x, or for all x in the domain: if the latter
holds, we say f is differentiable: ∀x ∈ dom f ∃f ′(x).

Consequences: f is increasing (resp. decreasing) if f ′(x) > 0 (resp. < 0).
It may be that f is neither increasing nor decreasing in some point x: this means

f ′(x) = 0. This is intuitive if we look at the graph.
We say f(x∗) is a relative maximum if and only if ∃ε > 0 such that

f(x∗) ≥ f(x) ∀x ∈ (x∗ − ε, x∗ + ε) =: Ix0,ε.

Ix0,ε is called a neighborhood of x0.
If f is differentiable, this means f ′(x∗) = 0.

Theorem 1 (Rolle’s Theorem). Left f : [a, b] → R continuous on [a, b] and dif-
ferentiable on (a, b). If f(a) = f(b), then there is a point x0 ∈ (a, b) such that
f ′
(
x0
)

= 0.

x

y

a

f(a) = f(b)

bx0

Theorem 2 (Mean-value Theorem). Suppose that f : [a, b]→ R is continuous on
[a, b] and differentiable on (a, b). Then, there exists x0 ∈ (a, b) such that

f(b)− f(a) = f ′
(
x0
)

(b− a).
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a

f(a)

b

f(b)

x0

Now consider f : U ∈ R, U ⊂ Rn where

Rn = R× R× R× · · · × R.

Again, U = dom(f).
Let ei := (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

). This is called an elementary vector.

Given any x0 ∈ dom f ⊂ Rn, consider

∂f

∂xi

(
x0
)

:= lim
h→0

f(x0 + hei)− f
(
x0
)

h
;

this (if it exists) is called the partial derivative of f with respect to xi.

Remark 3. ∂f
∂xi

: dom f → R since it associates to any x the value ∂f
∂xi

(x).

Since we can do that for any i (for which partial derivatives exist), we obtain n
new functions.

Example 4. 1. Take f(x1, x2) = Axα1x
β
2 with A,α, β > 0 (a Cobb-Douglas

function).

∂f

∂x1
(x1, x2) = αAxα−1

1 xβ2

which (for x1, x2 6= 0)3 is equal to

α
Axα1x

β
2

x1
= α

f(x1, x2)

x1
.

Symmetrically,
∂f

∂x1
(x1, x2) = β

f(x1, x2)

x2
.

2. f(x1, x2) = min{ax1, bx2} with a, b > 0, x1, x2 > 0 (a Leontief function).

We have to distinguish some cases:

• ax1 < bx2:

a(x1 + h) < bx2 for h small enough.

So
f(x1 + h, x2)− f(x1, x2)

h
=
a(x1 + h)− ax1

h
= a.

3Which is usually the case in common economic interpretations
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• ax1 > bx2:
similarly,

a(x1 + h) > bx2 for |h| small enough.

So
f(x1 + h, x2)− f(x1, x2)

h
=
bx2 − bx2

h
= 0.

• ax1 = bx2:

f(x1 + h, x2)− f(x1, x2)

h
=

{
bx2−bx2

h = 0 if h > 0
a(x1+h)−ax1

h = a if h < 0.

As a consequence, if we look at

lim
h→0

f(x1 + h, x2)− f(x1, x2)

h

the result depends on the sign of h. . . in other words, this limit does not
exist. So ∂f

∂x1
(ax1, bx2) does not exist in the point

(
x1,

a
bx1

)
.

x1

bx2

x1 = b
ax2

f(x1, x2)

a

1.2 Differential

Take f : U → R, U ⊂ R, differentiable.

Example 5. f(x) = 1
2

√
x = 1

2x
1
2 taken as a production function (it has all the

typical properties).

f(100) = 1
210 = 5. What if the inputs are increased by 1?

f(101) = 5.02494 . . . , so the increase is 0.02595 . . .

In general, f ′(x) = 1
4x
− 1

2 . So f ′(100) = 1
4 ·

1
10 = 0.025.

Not the same, but very similar. That’s why economists talk about marginal
productivity of an input, thought as increase of output corresponding to an increase
of input by 1 unit.

In general, we may consider h = ∆x⇒ ∆y := f(x0 + ∆x)− f
(
x0
)
: for small

values of ∆x,

f(x0 + ∆x)− f
(
x0
)

∆x
≈ f ′

(
x0
)

or
f(x0 + ∆x) ≈ f

(
x0
)

+ f ′
(
x0
)

∆x
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(if we know the “old” value and the derivative in it, we can “forecast” the “new”
one).

x

y

f

x0

f(x0)

x0 + ∆x

f(x0) + f ′(x0)∆x

f(x0 + ∆x)

∆x

So I can build the function:

x 7→ f
(
x0
)

+ f ′
(
x0
)

(x− x0)

which is the equation of the tangent line T at the graph of f in (x0, f
(
x0
)
).

03/11/2010

Let’s introduce a new notation:

dy = change of y along the tangent line T .

And let’s write dx = ∆x. Then,

dy = f ′
(
x0
)
dx,

and this is a linear function with variables dx, dy (= differentials) with origin
(x0, f

(
x0
)
).

The smaller the ∆x, the bigger the precision of this linear approximation.

So far, we studied the situation for functions in 1 variable. Let’s generalize this
to higher dimensions.

Given f : U → R, with U ⊂ R2, for x0 = (x0
1, x

0
2) ∈ U , we may consider

f
(
x0

1 + ∆x1, x
0
2 + ∆x2

)
≈ f

(
x0

1, x
0
2

)
+

∂f

∂x1

(
x0

1, x
0
2

)
∆x1 +

∂f

∂x2

(
x0

1, x
0
2

)
∆x2

and

(x1, x2)
T7→ f(x0

1 + x0
2) +

∂f

∂x1
(x0

1, x
0
2)(x1 − x0

1) +
∂f

∂x2
(x0

1, x
0
2)(x2 − x0

2)
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is the equation of the function describing the two-dimensional plane T tangent to
the graph of f at (x0

1, x
0
2, f(x0

1, x
0
2)), where

graph(f) = {(x1, x2, f(x1, x2))|(x1, x2) ∈ U} ⊂ R3.

This is the generalization of the tangent line to a function in 2 variables.
For ∆y = f(x1, x2)− f(x0

1, x
0
2), the expression

T (x1, x2)− f(x0
1, x

0
2) =

∂f

∂x1
(x0

1, x
0
2)(x1 − x0

1) +
∂f

∂x2
(x0

1, x
0
2)(x2 − x0

2)

is a linear approximation around x0. In this case too we can introduce differentials:

df = dy =
∂f

∂x1
(x0

1, x
0
2)dx1 +

∂f

∂x2
(x0

1, x
0
2)dx2

is the same linear approximation of ∆y around x0.

In general, we consider a function

f(x0
1 + ∆x1, . . . , x

0
n + ∆xn) ≈ f(x0

1, . . . , x
0
n) +

n∑
i=1

∂f

∂xi
(x0

1, . . . , x
0
n)∆xi

and the function

(x1, . . . , xn)
T7→ f(x0

1, . . . , x
0
n) +

n∑
i=1

∂f

∂xi
(x0

1, . . . , x
0
n)(xi − x0

i )

describes the n-dimensional tangent hyperplane to

graph(f) = {(x1, . . . , xn, f(x1, . . . , xn))|(x1, . . . , xn) ∈ U} ⊂ Rn+1

at the point (x0, f(x0)).
We can then look at

df =

n∑
i=1

∂f

∂xi
(x0)dxi

=

(
∂f

∂x1

(
x0
)
, . . . ,

∂f

∂xn
(
x0
))dx1

...
dxn


= Df

(
x0
)
dx,

which is called the total differential of f .

Df
(
x0
)

=

(
∂f

∂x1

(
x0
)
, . . . ,

∂f

∂xn

(
x0
))

is the Jacobian derivative of f at x0 and df , dx1, . . . , dxn are differentials with

dx =

dx1

...
dxn
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df = Df
(
x0
)
dx is a linear approximation of

∆y = f(x)− f
(
x0
)

around x0.
We can now generalize in another direction. . .

1.3 Directional derivatives and gradients

Let’s recall that

∂f

∂x1

(
x0

1, x
0
2

)
= lim
h→0

f
(
x0

1 + h, x0
2

)
− f

(
x0

1, x
0
2

)
h

:

Definition 6. A curve in Rn is an n-uple of continuous functions

x(t) = (x1(t), . . . , xn(t))

with xi : I → R for all i = 1, . . . , n and I ⊂ R an interval.
xi(t) are the coordinate functions and t the parameter describing the curve. If

t is time, then x(t) = (x1(t), . . . , xn(t)) are the coordinates of the point at time t.

Example 7. xi(t) = t, 0 ≤ t ≤ 1, i = 1, 2⇒ {x(t)|t ∈ [0, 1]} = {(t, t)|0 ≤ t ≤ 1}

Let x(t) be a curve in Rn. Consider a sequence {hj}∞j=1 in R such that hj → 0
for j →∞.

Then, given t0 ∈ I, this induces another sequence: {x(t0 + hj)}∞j=1 in Rn.
Now, consider(

lim
hj→0

x1(t0 + hj)− x1(t0)

hj
, . . . , lim

hj→0

xn(t0 + hj)− xn(t0)

hj

)
;

those limits are simply the derivatives:

(x′1(t0), . . . , x′n(t0));

this object is called the velocity vector of the curve at t0, and x′i(t0) is the instan-
taneous velocity of the i-th coordinate along the curve at t0.

How can we draw a velocity vector?
x(t0+hj)−x(t0)

hj
= lenghtening of x(t0 + hj)− x(t0) whenever hj < 1.
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x(t0) x1(·)− x1(t0)

x2(·)− x2(t0)

x(t0 + 1)− x(t0)

x(t0+hj)−x(t0)
hj

limhj→0

we can see that x′(t0) is a tangent vector (=velocity vector) to the curve at
t = t0.

Example 8. x(t) = (t3, t2), t0 = 0. Then:

• x(0) = (0,0)

• x(1) = (1,1)

• x(2) = (8,4)

• x(-1) = (-1,1) . . .

1 84

3

x′(t) = (3t2, 2t)⇒ x′(1) = (3, 2).
More in general, the slope of the tangent vector is: 2t

3t2 = 2
3t .

We can verify it goes to ∞ for t→ 0.
In fact, x′(0) = (0, 0), which is not a “tangent vector”. . . we have a cusp.

Definition 9. A curve (x1(t), . . . , xn(t)) is regular if each x′i(t) is continuous in t
and

(x′1(t), . . . , x′n(t)) 6= (0, . . . , 0)

Remark 10. Cusps (null vectors) are not necessarily associated to infinite slope.

04/11/2010
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We can now come back to the previous question: how does a function f : U →
R, U ⊂ Rn, behave along a curve x(t), with t ∈ I?

What we want to study is the composition

R Rn

I //

⊂

U //
⊂

R

t

∈

� // x(t)
� //

∈

f(x(t))

∈
We hence can create g(t) = f(x(t)), t ∈ I.
What is g′(t)?
In the case n = 1, it’s easy:

g′(t) =
df(x(t))

dt
=f ′(x(t))x′(t)

(the ordinary formula for functions composition - a.k.a. the “chain rule”).
If instead n > 1,

g′(t) =
∂f

∂x1
(x(t))x′1(t) + · · ·+ ∂f

dxn
(x(t))x′n(t).

This expression seems more cumbersome than the one-dimensional case. So
we’ll rewrite it as follows:

g′(t) =

(
∂f

∂x1
(x(t)), . . . ,

∂f

∂xn
(x(t))

)x
′
1(t)
...

x′n(t)


=Df(x(t))x′(t);

this is the “new” chain rule: “chain rule number I”.4

Example 11. f(x, y) = x2 + y25

x(t) = y(t) = t (the straight 45◦ line):

{(x(t), y(t))|t ∈ R} = {(t, t)|t ∈ R}.

Obviously, x′(t) = 1, y′(t) = 1 ⇒ g(t) = f(x(t), y(t)) = t2 + t2 = 2t2 ⇒
g′(t) = 4t.

Let’s verify the chain rule yields the same results:

4We’ll later have number II, III, and IV also.
5In 2 dimensions, using x and y is simpler than using subscripts.
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g′(t) =
∂f

x
(x(t), y(t)) · 1 +

∂f

∂y
(x(t), y(t)) · 1

=2x(t) + 2y(t)

=2t+ 2t = 4t

Let’s now follow a generalization.
If

x : Rs // Rn

t = (t1, . . . , ts)
� //

∈

(x1(t), . . . , xn(t))

∈

We can hence define, for a given function f : Rn → R,

g(t1, . . . , ts) = f(x1(t1, . . . , ts), . . . , xn(t1, . . . , ts))

Rs

g

??
x(·) // Rn

f // R

Now, given any i = 1, . . . , s,

∂g

∂ti
(t) =

∂f

∂x1
(x(t))

∂x1

∂ti
(t) + · · ·+ ∂f

∂xn
(x(t))

∂xn
∂ti

(t);

since ti is the only thing I’m varying, I get the result as a function of just ti.
Then, I get

Dg(t) =

(
∂g

∂t1
(t), . . . ,

∂g

∂ts
(t)

)
;

this is the “chain rule number II”.

Example 12. Let Q be the capital, Q = 4K
3
4L

1
4 the production function.

Let K and L vary in time t and in values of the interest rate r according to:

K(t, r) =
10t2

r
, L(t, r) = 6t2 + 250r︸︷︷︸

substitution effect, i.e.

⇒ Q(t, r) = 4

(
10t2

r

) 3
4 (

6t2 + 250r
) 1

4

We want to calculate the rate of change of Q with respect to t when t = 10
and r = 0.1.

According to the chain rule number II, since we have 2 variables (K and L), we
have two components

∂Q

∂t
=
∂Q

∂K
· ∂K
∂t

+
∂Q

∂L
· ∂L
∂t

.
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Notice that, differently from above, t is a scalar, not a vector. Economists
are often sloppy and use the same letters with different uses (e.g. Q is both the
dependent variable and the function expressing it), and we must capable to give
the right interpretation to each object.6

Now we can write

K(10, 0.1) =
10 · 100

0.1
= 10000

and
L(10, 0.1) = 6 · 100 + 25 = 625.

Let’s calculate partial derivatives:

∂Q

∂K
= 3K−

1
4L

1
4 = 3

(
L

K

) 1
4

.

We can now insert those values into

∂Q

∂K
= 3

(
625

10000

) 1
4

= 3 · 5

10
= 1.5,

∂Q

∂K
=

1

4
· 4K 3

4L−
3
4 =

(
K

L

) 3
4

=

(
10

5

)3

= 8.

All is left to calculate is

∂K

∂t
=

20t

r
=

200

0.1
= 2000,

∂L

∂t
= 12t = 120.

Finally, putting everything together:

∂Q

∂t
= 1.5 · 2000 + 8 · 120 = 3000 + 960 = 3960.

What is Q(10000, 625), the amount that the firm can produce? It’s 4 ·1000 ·5 =
20000.

If we measure t in years, for instance, we can say that output incresases of 3960
units in an year (starting from the given values).

Since in this case we have constant returns to scale7, this is not even an approx-
imation: this is the real value.

We could also do the approximation as yesterday: we would take

dQ =
∂Q

∂t
dt

=

(
∂Q

∂K

∂K

∂t
+
∂Q

∂L

∂L

∂t

)
dt

and with dt = 1 we would get exactly the same result.

6Unless what is written is wrong - and that happens.
7Q is linear in t.
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A step back: we want to calculate the rate of change of a function f(x1, . . . , xn)
at a given point x0 = (x0

1, . . . , x
0
n) in a given direction v = (v1, . . . , vn).

v1

v2 v1 + v2

We can then define the curve x(t) = x0 + tv, t ∈ R, and look at

g(t) = f(x(t)) = f(x0 + tv) = f(x0
1 + tv1︸ ︷︷ ︸
x1(t)

, . . . , x0
n + tvn︸ ︷︷ ︸
xn(t)

)

⇒ g′(t) =
∂f

∂x1
(x0 + tv)v1 + · · ·+ ∂f

∂xn
(x0 + tv)vn :

in particular, if I calculate in 0:

g′(0) =
∂f

∂x1

(
x0
)
v1 + · · ·+ ∂f

∂xn

(
x0
)
vn

=

(
∂f

∂x1

(
x0
)
, . . . ,

∂f

∂xn
(x0)

)v1

...
vn


or more coincisely:

g′(0) = Df
(
x0
)
v =: Dfx0

(v).

This is precisely what we were looking for: the directional derivative of f in
direction v.

So if v = ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0), we get precisely the ith partial derivative:

Dfx0(ei) =
∂f

∂xi

(
x0
)

;

this shows that the concept of directional derivative is a generalization of the
partial ones.

Let’s get back to the previous:
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Example 13. Q = 4K
3
4L

1
4 = Q(K,L)

x0 = (K0, L0) = (10000, 625) (which was corresponding to t = 10 - but we
don’t care about t now).

In the compact notation, we have, for instance

DQ(K0,L0)(1, 1)

(we move diagonally through a 45◦ line), and that gives

DQ(K0,L0)(1, 1) =
∂Q

∂K
(K0, L0) · 1 +

∂Q

∂L
(K0, L0) · 1

=1.5 + 8 = 9.5.

The directional derivative is a simple concept: just take the partial ones and
multiply by the vector coordinates!

K

L

L0

K0

L0 + 1

K0 + 1

dQ = 9.5

dQ = 1.5

dQ = 8

We can also write

dQ =
∂Q

∂k
· dK +

∂Q

∂L
· dL = 9.5

which is the way we calculated approximations (then, in this case the result is
exact, but we won’t bother).

“In this direction”, we get an increase of 9.5. Along the K axis, it would have
been 1.5, along the L axis 8.

The picture seems to suggest that the oblique direction is “better” than the
orthogonal ones. . . but that vector is also longer!

We want to make the same calculation for a vector of lenght 1: ‖v‖ = 1, where

‖x‖ =

√√√√ n∑
i=1

x2
i

and that means

‖(a, a)‖ = 1 ⇐⇒
√
a2 + a2 = 1 ⇐⇒ a =

1√
2
⇒ v =

(
1√
2
,

1√
2

)
.

Finally,
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DQK0,L0

(
1√
2
,

1√
2

)
= 1.5

1√
2

+ 8
1√
2

= 9.5
1√
2
≈ 6.7175 . . .

So the claim that the 45◦ line is the best direction was wrong! Just increasing
L is already better!

This raises the question: what is the best direction?

K

L

L0

K0

L0 + 1

K0 + 1

dQ = 6.7175

dQ = 1.5

dQ = 8

We want to solve the problem

max(v1,v2)DQ(K0,L0)(v1, v2) s.t.‖(v1, v2)‖ = 1.

Notice that

x, y ∈ Rn ⇒ x · y =

n∑
i=1

xiyi = ‖x‖‖y‖ cos θ

where θ is given by

θ x

y

and the cosine is

θ

(proof on S.B: Theorem 10.3, pp. 215-217).
Now,

Dfx0(v) = Df
(
x0
)
· v =

∥∥Df (x0
)∥∥ ‖v‖︸︷︷︸

1

cos θ

and hence the only thing that can change is θ. More precisely, we just want to
maximize cos θ. . . and that happens for θ = 0⇒ cos θ = 1.

Then θmax = 0.
This is a general result:
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Theorem 14. Let f : U → R be differentiable with continuous partial derivatives,
U ⊂ Rn.

At any point x0 ∈ U with Df
(
x0
)
6= 0, the vector Df

(
x0
)

at x0 points into
the direction in which f increases most rapidly.

Exercise 15. Homework: find the best direction in the example given, and calculate
the highest dQ.

09/11/2010

We have to write the Jacobian:

DQ(K0, L0) =

(
∂Q

∂K
(10000, 625),

∂Q

∂L
(10000, 625)

)
= (1.5, 8)

and this directly gives us the direction of the optimal v.

We must however normalize it:

K

L

L0

K0

L0 + 8

K0 + 1.5

(1.5, 8)

1

v

We want to have
v = aDQ(K0, L0), a > 0

such that ‖v‖ = 1.

⇒ ‖aDQ(K0, L0)‖ = 1

We’ll just take

a =
1

‖DQ(K0, L0)‖
⇒ v =

DQ(K0, L0)

‖DQ(K0, L0)‖
since in general ∥∥∥∥ v

‖v‖

∥∥∥∥ = 1.

Finally, we can write

dQ = DQ(K0, L0)
DQ(K0, L0)

‖DQ(K0, L0)‖
.
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Now, it “just happens” that the two components have the same numerator. . . se
we’re taking the dot product of a vector by itself, also known as the norm:

dQ =
‖DQ(K0, L0)‖2

‖DQ(K0, L0)‖
= ‖DQ(K0, L0)‖ = ‖(1.5, 8)‖ =

=
√

1.52 + 82 =
√

2.25 + 64 =
√

66.25 ≈ 8.139 . . .

As we expected, this is higher than 8.

In general, we consider, for directional derivatives, expressions of the form

Df
(
x0
)
v = Dfx0(v)

only where ‖v‖ = 1.
Sometimes, one may consider the vector Df

(
x0
)

as a column vector:

Df
(
x0
)T

=


∂f
∂x1

(
x0
)

...
∂f
∂xn

(
x0
)
 = ∇f

(
x0
)

which is called gradient (vector) of f at x0.
As we’ve seen, the gradient always points towards the direction of steepest

ascent of the function.

1.4 Jacobians, higher order derivatives, and Hessians

Consider a function

f : Rn → Rm

f : Rn //

∈

Rm

∈

x //

=

f(x)

=

(x1, . . . , xn) // (f1(x), . . . , fm(x))

We may consider this function f at a specific point x0 ∈ Rn and take

∆x = (∆x1, . . . ,∆xn).

Then:

f1(x0 + ∆x)− f1

(
x0
)
≈

n∑
i=1

∂f1

∂xi

(
x0
)

∆xi

but if we can do that for f1, we can do it for all components:

16



...

fm(x0 + ∆x)− fm
(
x0
)
≈

n∑
i=1

∂fm
∂xi

(
x0
)

∆xi

We can rewrite the right hand side merging all equations in a vectorial form:

f(x0 + ∆x)− f
(
x0
)
≈


∂f1
∂x1

(
x0
)
· · · ∂f1

∂xn

(
x0
)

...
. . .

...
∂fm
∂x1

(
x0
)
· · · ∂fm

∂xn

(
x0
)


︸ ︷︷ ︸
m×n

∆x1

...
∆xn

 .

This will be written

Df
(
x0
)
·∆x

where now Df
(
x0
)

is the Jacobian (matrix) of f at x0, and

∆x =

∆x1

...
∆xn

 .

The expression above is a linear approximation of

∆y = f(x0 + ∆x)− f
(
x0
)
∈ Rn.

We can also express this in terms of differentials:dy1

...
dym

 =

df1

(
x0
)

...
dfm

(
x0
)
 = Df

(
x0
)dx1

...
dxn

 ,

or, in a more coincise way:

df
(
x0
)

= Df
(
x0
)
dx,

which resembles very much the one-dimensional case in which we had first met
the differential.

Example 16. Let’s consider 2 commodities with demand functions

q1 = 6p−2
1 p

3
2
2 y

q2 = 4p1p
−1
2 y2

(which economically speaking are not that absurd - demand for each good decreases
with its price and increases in the price of the other one).

We can write

q = (q1(p1, p2, y), q2(p1, p2, y))

= q(p1, p2, y)

⇒R3 q→ R2.

17



Dq︸︷︷︸
2×3

=

[
−12p−3

1 p
3
2
2 y 9p−2

1 p
1
2
2 y 6p−2

1 p
3
2
2

4p−1
2 y2 −4p1p

−2
2 y2 8p1p

−1
2 y

]
.

Let’s assume p0
1 = 6, p0

2 = 9, y0 = 2. We get:

Dq(6, 9, 2) =

[
−3 2−13 2−19

243−2 −253−3 253−1

]
.

If, for example, dp1 = 0.1, dp2 = 0.1 and dy = −0.1, what do we get? We
are searching for the linear approximation of the effect of a simultaneous change in
all components - and since the different changes have different effects, the result is
not obvious. Let’s calculate:

[
dq1

dq2

]
=

[
−3 3

2
9
2

16
9 − 32

27
32
3

] 0.1
0.1
−0.1

 =

[ −6+3−9
20

48−32−288
270

]
=

[
− 12

20
− 272

270

]
=

[
− 3

5
− 136

135

]
.

So we found the change in the quantities demanded when the given variable
changes happen.

We have considered function from Rn to Rm. We want to extend the consider-
ations above to the behaviour of a function on a curve.

Consider

R
x(·) //

g

!!
Rn

f // Rm

t
� //

∈

x(t)
� //

∈

f(x(t))

∈

g(t) =

 g1(t)
...

gm(t)

 =

 f1(x(t)
...

fm(x(t))

⇒ gi(t) = fi(x(t))

∀i = 1 . . .m.

⇒ g′i(t) =

n∑
j=1

∂fi
∂xj

(x(t))x′j(t)∀i = 1 . . .m

= Dfi(x(t))x′(t)∀i = 1 . . . n

⇒ g′(t) =

 g
′
1(t)
...

g′m(t)

 =


∂f1
∂x1

(x(t)) . . . ∂f1
∂xn

(x(t))
...

. . .
...

∂fm
∂x−1 (x(t)) . . . ∂fm

∂xn
(x(t))


x
′
1(t)
...

x′n(t)

 = Df(x(t))x′(t) :

this is our chain rule III . We can express it also as follows:

g′(t) = D(f ◦ x)(t)

18



where, in general,
g(t) = f(x(t)) ∀t⇒ g = f ◦ x.

Example 17. We’ll extend the previous example: we had

q1 =q1(p1, p2, y)

q2 =q2(p1, p2, y);

we now assume a functional form for the independent variables too:

p1(t) =
√

12t

p2(t) = t2

y(t) = t− 1

(we have added some form of inflation. . . )
We want to consider

R
(p1,p2,y) // R3

(q1,q2) // R2

t
� //

∈

(p1(t), p2(t), y(t)) � //

∈

(q1, q2).
∈

How is demand changing over time, that is, with respect to t, at t = 3?

Remark 18.
(p1(r), p2(r), y(3)) = (6, 9, 2) = (p0

1, p
0
2, y

0)

which by “chance” are the same numbers as in the former example.

g(t) =

[
q1(p1(t), p2(t), y(t))
q2(p1(t), p2(t), y(t))

]
We are looking for the variations in demand, which we will calculate as in 1.4:[
g′1(t)
g′2(t)

]
=

[
dq1
dt
dq2
dt

]
=

[
∂q1
∂p1

∂q1
∂p2

∂q1
∂y

∂q2
∂p1

∂q2
∂p2

∂q2
∂y

]p′1(t)
p′2(t)
y′(t)

 =

[
−3 3

2
9
2

16
9 − 32

27
32
3

]p′1(t)
p′2(t)
y′(t)


Now,

p′1(t) =
√

12
1

2
t−

1
2
t=3
= 1

p′2(t) =2t = 6

y′(t) =1,

so

[
g′1(t)
g′2(t)

]
=

[
−3 3

2
9
2

16
9 − 32

27
32
3

]1
6
1

 =

[
21
2

48+32·3
27

]
=

[
21
2
48
9

]
.

The message is: although prices are increasing over time, income is increasing
too and its effect is, at least at time t = 3, dominating the others, so demand is
increasing anyway.
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There is still one further generalization we can make. Consider finally

Rs
x(·) //

g

  
Rn

f // Rm

⇒ g(t) =

 g1(t1, . . . , ts)
...

gm(t1, . . . , ts)

 =

f1(x(t(t1, . . . , ts))
...

fm(x(t1, . . . , ts))


where

x(t) = (x1(t1, . . . , ts), . . . , xn(t1, . . . , ts))

so that we can consider, for any i = 1, . . . ,m and h = 1, . . . , s,

∂gi
∂tn

(t).

The only difference from 1.4 is that now x′j(t) becomes a matrix:

∂gi
∂tn

(t) =

m∑
j?1

∂fi
∂xj

(x(t))
∂xj
∂tn

(t)

=Dfi(x(t))


∂x1

∂tn
(t)

...
∂xn
∂tn

(t)

∀i = 1, . . . ,m, h = 1, . . . , s

which in matrix form is

Dg(t) =
[
∂gi
∂tn

]
i,h

=


∂f1
∂x1

(x(t)) · · · ∂f1
∂xn

(x(t))
...

. . .
...

∂fm
∂x1

(x(t)) · · · ∂fm
∂xn

(x(t))



∂x1

∂t1
(t) · · · ∂x1

∂ts
(t)

...
. . .

...
∂xn
∂t1

(t) · · · ∂xn
∂ts

(t)

 .

So finally to calculate

∂gi
∂tn

(t),

we will have to calculate the i-th row of the first matrix and the h-th column of
the second, and multiply them.

Again, we can rewrite

Dg(t) = Df(x(t))︸ ︷︷ ︸
m×n

Dx(t)︸ ︷︷ ︸
n×s︸ ︷︷ ︸

m×s

which we will call chain rule IV.
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We can use this result to rewrite in general notation the following:

Rs
f //

h

  
Rn

g // Rm ⇒ h = g ◦ f

⇒ Dh(x) =Dg(f(x))Df(x)

=D(g ◦ f)(x);

this is a way to decompose a function in its components in order to derive it: this
is nothing more than the well known formula for deriving composite functions, in
multidimensional case.

10/11/2010

1.4.1 Higher order derivatives

Given

f : Rn → R,

we have seen that we can consider the partial derivatives

∂f
∂xi

: Rn //

∈

R

∈

x � // ∂f
∂xi

(x) ∀i = 1, . . . , n.

Consider

∂

∂xj

(
∂f

∂xi
(x1, . . . , xn)

)
;

there is a shorter way to write the same thing:

∂2f

∂xi∂xj
(x1, . . . , xn),

and there is a further notation:

∂2f

∂xi∂xi

def
=
∂2f

∂x2
i

.

Now: how many derivatives of this form do we have? We have n indexes i and,
for each, n indexes j. There is a way to write them together, which is the Hessian
(matrix):

D2f(x)
def
=


∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) . . . ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) . . . ∂2f

∂x2∂xn
(x)

...
...

. . .
...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) . . . ∂f
∂x2
n

(x)

 .
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Example 19. Take
Q = Axαyβ = f(x, y),

a production function. Then,

∂Q

∂x
=αAxα−1yβ

∂Q

∂y
=βAxαyβ−1

⇒ D2Q =

[
α(α− 1)Axα−2yβ αβAxα−1yβ−1

αβAxα−1yβ−1 β(β − 1)Axαyβ−2

]
We can observe that the two terms in position (1, 2) and (2, 1) are the same. It

may be by chance... but it is not.

Theorem 20 (Yanng’s Theorem). Suppose f : U → R is such that all partial
derivatives until order 2 exist and are continuous functions, and U is open. Then,
for all x ∈ U and each pair of indices i and j, we have

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x).

In other terms, the Hessian matrix D2f(x) is symmetric.

Therefore, let’s take such a partial derivative of order 2:

∂2

∂xi∂xj
: Rn //

∈

R

∈

x � // ∂2f
∂xi∂xj

(x) ∀i, j = 1, . . . , n.

But then, we may consider

∂

∂xl

(
∂2f

∂xi∂xj
(x)

)
=

∂3f

∂xi∂xj∂xl
(x)∀i, j, l = 1, . . . , n.

Certain functions may be differentiable an infinity of times.

Definition 21. A Ck function f is a function such that all partial derivatives until
order k exist and are continuous.

So for instance in the Yanng’s theorem, we could have said simply “suppose
that f is C2”. . .

This will be used in the next topic. . .

1.5 Taylor expansion

Let us consider

f : R→ R

C1; then, as we know,

f(x0 + h) ≈ f
(
x0
)

+ f ′
(
x0
)
h. (1)
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Then, define

R(h, x0)
def
= f(x0 + h)− f

(
x0
)
− f ′

(
x0
)
h,

the “approximation error”.
Then,

R(h, x0)

h

h→0→ 0,

as can be deduced by the definition of R(h, x). But obviously the denominator of
this definition goes to 0 as h→ 0, so the numerator does to. . . and faster !

(1) is the best linear approximation of f at x0.
In what sense?

x

f

x0

best

worse

But this is not necessarily the best approximation in general!
We can derive a quadratic approximation, assuming f is C2:

f(x0 + h) ≈ f
(
x0
)

+ f ′
(
x0
)
h+

1

2
f ′′
(
x0
)
h2. (2)

For its error,

R2(h, x0)
def
= f(x0 + h) . . . ,

we get
R2(h, x0)

h2

h→0→ 0,

and it tends faster than R(h, x0)!

h

error

h

h2

Theorem 22 (Taylor). Let f : U → R be a Ck+1 function, with U ⊂ R an interval.
Then, for any numbers x0 and x0 +h in U , there exists a number c between x0

and x0 + h such that

f(x0 + h) =

h∑
n=0

1

n!
f (n)

(
x0
)
hn +

1

(k + 1)!
f (k+1)(c)hk+1.
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where

f (n)(x) :=
(
f (n−1)

)′
(x) ∀n ∈ N

and
f (0) := f(x) ∀x ∈ U .

Remark 23. If we take k = 2, we get exactly the expression (2).

The formula of the Taylor expansion is a polynomial in the variable h, and
we can approximate arbitrary functions (like exponential, logarythm, trigonometric
functions. . . ) with it. The error is given by

1

(k + 1)!
f (k+1)(c)hk+1,

for some c, which however is not “too far away” from x0, since it is between x0

and x0 + h.

Remark 24. This is the k-th order Taylor expansion, and

Rk(h, x0) :=
1

(k + 1)!
fk+1(c)hk+1

has the following property (which comes immediately from the definition):

Rk(h, x0)

hk
=

1

(k + 1)!
f (k+1)(c)h.

Now, what does
1

(k + 1)!
f (k+1)(c)

do for h→ 0? It goes to
1

(k + 1)!
f (k+1)

(
x0
)

,

since c→ x0. And that expression is a real number (since by hypothesis the k+1st
derivatives exist and are finite). When it is multiplied by h, which tends to 0, we
get something that, again, tends to 0.

Proof. Fix x0 and h such that x0 ∈ U and x0 + h ∈ U .
Define

g(t)
def
= f(t)− f

(
x0
)
−

k∑
n=1

1

n!
f (n)

(
x0
)

(t− x0)n −M(t− x0)k+1,

where

M :=
1

hk+1

[
f(x0 + h)− f

(
x0
)
−

k∑
n=1

1

n!
f (n)

(
x0
)
hn

]
;

then,

g
(
x0
)

= 0.
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Now,

g(x0 + h) =f(x0 + h)− f
(
x0
)
−

k∑
n=1

1

n!
f (n)

(
x0
)
hn −Mhk+1

=0.

We know from Rolle (since g is a differentiable function) that ∃c1 ∈ [x0, x0, h]
such that g′(c1) = 0, where

g′(t) = f ′(t)−0−f ′
(
x0
)
−

k∑
n=2

1

(n− 1)!
f (n)

(
x0
)

(t−x0)n−1−(k+1)M(t−x0)k.

What is the value in x0? It is 0. So we have 2 points in which the derivative of
g becomes 0. So, there must exist c2 ∈ [x0, c1] such that g′′(c2) = 0, where

g′′(t) = f ′′(t)−f ′′
(
x0
)
−

k∑
n=3

1

(n− 2)!
f (n)

(
x0
)

(t−x0)n−2−(k+1)kM(t−x0)k−1.

We can now evaluate g′′:

g′′
(
x0
)

= g′′(c2) = 0:

once again, applying Rolle, we conclude

∃c3 ∈ [x0, c2] : g′′′(c3) = 0.

Of course we could continue, it’s always the same. The general formula is:

∀i ≤ k − 1

g(i)(t) = f (i)(t)−f (i)
(
x0
)
−

k∑
n=i+1

1

(n− i)!
f (n)

(
x0
)

(t− x0)n−i

−(k + 1) · · · · · (k + 1− (i− 1))M(t− x0)k+1−i

and ∃ci+1 between x0 and ci such that gi+1(ci+1) = 0.
From this formula, we can in particular get that

g(k−1)(t) = f (k−1)(t)− f (k−1)
(
x0
)
−1

1
f (k)

(
x0
)

(t− x0)

−(k + 1) · · · · · 3M(t− x0)2

and ∃ck between x0 and ck−1 such that g(k)(ck) = 0, where

g(k)(t) = f (k)(t)− f (k)
(
x0
)
− (k + 1)!M(t− x0)

⇒ g(k)
(
x0
)

= 0;
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so once more, we have that g(k) takes the same value in 0 and ck, so applying a
last time Rolle, we get that ∃ck+1 between x0 and ck such that g(k+1)(ck+1) = 0
where

g(k+1)(t) = f (k+1)(t)− (k + 1)!M .

This implies that

f (k+1)(ck+1) = (k + 1)!M

which is equivalent to

M =
1

(k + 1)!
f (k+1)(ck + 1).

If we multiply both sides by hk+1, we get:

[
f(x0 + h)− f

(
x0
)
−

k∑
n=1

1

n!
f (n)

(
x0
)
hn

]
=

1

(k + 1)!
f (k+1)(ck + 1)hk+1

⇐⇒ f(x0 + h) = f
(
x0
)

+

k∑
n=1

1

n!
f (n)

(
x0
)
hn +

1

(k + 1)!
f (k+1)(c)hk+1,

where c = ck+1.

11/11/10
What we have seen is the Taylor approximation in 1 variable.
We can imagine that the proof becomes cumbersome in the general (multivari-

ate) case - but the principle is similar: consider

f : U → R

with U ⊂ Rn. If f is C1 and x0, x0 + h are elments of U , then

f(x0 + h) = f
(
x0
)

+
∂f

∂x1

(
x0
)
h1 + · · ·+ ∂f

∂xn

(
x0
)
hn +R1(h, x0);

it is similar to the linear approximation that we had seen, except for the error
term that completes the equality. The error also has an analogous property:

R1(h, x0)

‖h‖
h→0→ 0

or, in more concise notation,

f(x0, h) = f
(
x0
)

+Df
(
x0
)
h+R1(h, x0).

We now want to introduce higher order approximations; for this purpose, con-
sider now the following expression:∑

i,j

∂2f

∂xi∂xj

(
x0
)
hi, hj ;
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we can rewrite it in a more concise way (in order to plug it in the approximation):
first, we explicit the two sums:

n∑
j=1

(
n∑
i=1

∂2f

∂xi∂xj

(
x0
)
hihj

)
,

then we can write the same term in vector form:(
n∑
i=1

∂2f

∂xi∂x1

(
x0
)
hi, . . . ,

n∑
i=1

∂2f

∂xi∂xn

(
x0
)
hi

)h1

...
hn



=(h1, . . . , hn)


∂2f
∂x2

1

(
x0
)

. . . ∂2f
∂x1∂xn

(
x0
)

...
. . .

...
∂2f

∂xn∂x1

(
x0
)

. . . ∂2f
∂x2
n

(
x0
)

h1

...
hn


= hT︸︷︷︸

1×n

D2f
(
x0
)︸ ︷︷ ︸

n×n

h︸︷︷︸
n×1︸ ︷︷ ︸

1×1∈R

.

We can therefore state the following

Theorem 25. Let f : U ∈ RC2 with U ∈ Rn open and x0 ∈ U . Then, there exists
a C2 function

h 7→ R2(h, x0)

such that, for any x0 + h ∈ U with the property that the line segment from x0 to
x0 + h lies in U ,

f(x0 + h) = f
(
x0
)

+Df
(
x0
)
h+

1

2
hTD2f

(
x0
)
h+R2(h, x0)

and
R2(h, x0)

‖h‖2
h→0∈Rn→ 0.

There is obviously the possibility to reach even higher order approximations, but
for our (economic) purposes the second order will be enough.

However, we want to elaborate a little bit on it.

Example 26. n = 2 gives us

f
(
x0

1 + h1, x
0
2 + h2

)
=f(x0

1, x
0
2) +

(
∂f

∂x1

(
x0
)
,
∂f

∂x2

(
x0
))[h1

h2

]
+

1

2
(h1, h2)

[
∂2f
∂x2

1

(
x0
)

∂2f
∂x1∂x2

(
x0
)

∂2f
∂x1∂x2

(
x0
)

∂2f
∂x2

2

(
x0
) ] [h1

h2

]
;

more specifically:

f(x1, x2) = x
1
4
1 x

3
4
2

(x2
1, x

0
2) = (1, 1) = P

⇓
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∂f

∂x1
=

1

4
x
− 3

4
1 x

3
4
2
P
=

1

4
∂f

∂x2
=

3

4
x

1
4
1 x
− 3

4
2

P
=

3

4

∂2f

∂x2
1

= − 3

16
x
− 7

4
1 x

3
4
2
P
= − 3

16

∂2f

∂x2
2

= − 3

16
x

1
4
1 x
− 5

4
2

P
= − 3

16

∂2f

∂x1∂x2
=

3

16
x
− 3

4x
− 1

4
2 = 3

16
1

⇓

f(1, 1) +

(
1

4
,

3

4

)[
h1

h2

]
+

1

2
(h1, h2)

[
− 3

16
3
16

3
16 − 3

16

] [
h1

h2

]
=1 +

1

4
h1 +

3

4
h2 +

1

2

(
− 3

16
h1 +

3

16
h2,

3

16
h1 −

3

16
h2

)[
h1

h2

]
=1 +

1

4
h1 +

3

4
h2 +

1

2

(
− 3

16
h2

1 +
3

16
h1h2 +

3

16
h2

1 −
3

16
h2

2

)
=1 +

1

4
h1 +

3

4
h2 −

3

32
h2

1 +
3

16
h1h2 −

3

32
h2

2.

How good is this Taylor approximation? Let’s take h1 = 0.1, h2 = −0.1. Then,
we get, for the linear component:

f(x0) +Df(x0)h =1 +
1

4
· 0.1 +

3

4
· −0.1

=1 +

(
−1

2

)
0.1 = 1− 0.05 = 0.95,

while the quadratic part is

1

2
hTD2f(x0)h =− 3

32
· 0.01 +

3

16
(−0.01)− 3

32
0.01

=− 12

32
· 0.01 = −3

8
· 0.01 = −0.00375.

Finally,

f(x0) =Df(x0)h+
1

2
hTD2f(x0)h

=0.95− 0.00375 = 0.94625,

where the true value is

f(x0 + h) = f(1.1, 0.9) = 0.9463026 . . .

0.94625

0.9463026. . .

0.95

It is interesting to notice that the approximation is not monotonic.
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1.6 Convexity, concavity and quasiconcavity

A set U ⊂ Rn is convex if:

x, y ∈ U ⇒ tx+ (1− t)y ∈ U ∀t ∈ (0, 1).

x

y

x

y

Definition 27. The function f : U ∈ R, U ⊂ Rn convex, is concave if

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y) ∀x, y ∈ U∀ t ∈ (0, 1).

If the inequality is strict ∀x 6= y, then f is strictly concave. A function f is ( strictly)
convex if ≤ (<) holds in place of ≥ (>).

x

f(x)

tx+ (1− t)y

f(tx+ (1− t)y)

y

f(y)

tf(x) + (1− t)f(y)

f concave
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f concave but not strictly.

f convex.

f convex but not strictly.
Given a function, even relatively simple, it is not easy to ascertain if it is

(quasi)concave or (quasi) convex. But if the function has additional properties
(i.e. it is differentiable), then it is much easier.

Theorem 28. The C1 function f : U ∈ R, where U ⊂ Rn is convex, is concave iff

f(y) ≤ f(x) +Df(x)(y − x) ∀x, y ∈ U .

f is strictly concave iff the inequality holds strictly ∀x ∈ U and y ∈ U with x 6= y.

Proof. We show the “⇒” direction: ∀t ∈ (0, 1) :

f(ty + (1− t)x) ≥ tf(y) + (1− t)f(x)

m

f(y) ≤ 1

t
[f(ty + (1− t)x)− (1− t)f(x)]
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m

f(y) ≤ f(x) +
f(x+ t(y − x))− f(x)

t
⇓

f(y) ≤ f(x) + lim
t→0

f(x+ t(y − x))− f(x)

t
But what it this limit? Let’s introduce the following function:

g(t) := f(x+ t(y − x)).

We can consider this as a curve, and write

g′(t) = Df(x+ t(y − x))(y − x)

⇓
g′(0) = Df(x)(y − x);

on the other hand:

g′(t) = lim
h→0

g(t+ h)− g(t)

h

= lim
h→0

f(x+ (t+ h)(y − x))− f(x+ t(y − x))

h

⇒ g′(0) = lim
h→0

f(x+ h(y − z))− f(x)

h

= lim
t→0

f(x+ t(y − z))− f(x)

t
,

which is precisely the limit seen above. So:

f(y) ≤f(x) + g′(0)

=f(x) +Df(x)(y − x),

which is precisely what we had claimed.

In the proof, we see an interesting thing: another way to get the differential
derivatives, by using the formula for directional derivatives but with a generic vector
in place of ei.

We can illustrate this result as follows: n = 1:

x

f(x)

y

f(y)

y − x

f ′(x)(y − x) = Df(x)(y − x)
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f(y)− f(x) ≤ Df(x)(y − x) ⇐⇒ f(y) ≤ f(x) +Df(x)(y − x).
However, what we saw so far still isn’t a feasible approach to study concavity

and convexity of functions. Such a method is given by the following:

Theorem 29. The C2 function f : U ∈ R, U ⊂ Rn convex, is concave iff D2f(x)
is negative semidefinite ∀x ∈ U .

If D2f(x) is negative definite ∀x ∈ U , then f is strictly concave.
Recall that A is negative semidefinite (definite) if and only if:

zTAz ≤ 0 ∀z ∈ Rn

(zTAz < 0 ∀z ∈ Rn, z 6= 0)

Proof. Again, we show “⇒” only.
Suppose f is concave and x ∈ U , x ∈ Rn. Then, ∃t > 0 : x+ tz ∈ U .

x

U

x+ z
x+ tz

So we can define

g(t) :=f(x+ tz)

⇒ g′(t) =Df(x+ tz)z

g′′(t) =zTD2f(x+ tz)z

and using the Taylor expansion:

g(t) = g(0) + g′(0)t+
1

2
g′′(c)t2

for the “right c”, c ∈ (−t, t).

⇒ f(x+ tz) = f(x) +Df(x)z · t+
1

2
zTD2f(x+ cz)z · t2

(still for some c ∈ (−t, t)).
The last equality can become

t2

2
zTD2f(x+ cz)z = f(x+ tz︸ ︷︷ ︸

y

)− f(x)−Df(x) z · t︸︷︷︸
y−x

.

The right hand side is composed by three terms that appeared in theorem 28.
Using that theorem, we get that

t2

2
zTD2f(x+ cz)z ≤ 0

⇒zTD2f(x+ cz)z ≤ 0

⇒c t→0→ 0

⇒zTD2f(x)z ≤ 0

def⇒D2f(x) is negative semidefinite.
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Hence, the Hessian matrix tells us if the matrix is negative semidefinite.

Example 30. Special case n = 1: what does the above translate to?
D2f(x) negative semidefinite means zf ′′(x)z ≤ 0∀z ∈ R,∀x ∈ U .
But then, z2 is positive, so the above implies f ′′(x) ≤ 0∀x ∈ U .
As we know, this is equivalent to f being a concave function.
If then f ′′(x) < 0, we get that f is strictly concave. . . but we do not claim the

other direction! It is not true! See for instance:

f(x) = −x4 ⇒ f ′(x) = −4x3, f ′′(x) = −12x2 ⇒ f ′′(0) = 0.

−x4

D2f(x) is negative semidefinite but not negative definite, although f is strictly
concave.

Theorem 31 (Simon and Blume, p.382). A ∈ Rn×n is negative definite iff

|A2m| > 0, |A2m+1| < 0, m = 0, 1, . . .

where Ak is the k-th order leading principal submatrix and |Ak| is the k-th order
leading principal minor.

A =



...
...

Ak
...

...

. . . . . .
. . .

...

. . . . . . . . .
. . .


An = A, A1 = [a11]

Example 32. Let u(x, y) = xayb, a, b > 0.
Then,

D2u =

[
a(a− 1)xa−2yb abxa−1yb−1

abxa−1yb−1 b(b− 1)xayb−2

]
,

the Hessian, is negative definite iff:

• m = 0⇒ A2m+1 = A1 =
[
a(a− 1)xa−2yb < 0

]
, and the determinant is the

element itself, which must be < 0.

• m = 1⇒ A2m = A2 = A, and the determinant,

a(a− 1)xa−2ybb(b− 1)xayb−2 − (abxa−1yb−1)2,

must be positive.
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Now, we can assume x and y positive, so the first condition already tells us
a < 1, while the second can be seen as:

abx2a−2y2b−2(ab− a− b+ 1)− a2b2x2a−2y2b−2

=abx2a−2y2b−2(−a− b+ 1︸ ︷︷ ︸
>0

) > 0,

so the second requirement is a+ b < 1 (which also implies the first one).

Under those condition, u(x, y) = xayb is strictly concave.

16/11/2010

Unfortunately, the characterization of definitness with the principal submatrixes
doesn’t extend to semidefinitness by simply not requiring that the inequalities are
strict: it’s instead more complicated: all principal submatrices (not just the leading
ones8) have to satisfy the property that the ones of dimension odd (even) have
negative (positive) determinant.9

This condition is generally difficult to verify, but we can check it in the simple
case seen last time, since the matrix is just 2× 2:

a+ b < 1, a, b > 0⇒ b < 1

u(x, y) = xayb is (weakly) concave ⇐⇒ a+ b ≤ 1.

More important than concavity for us is another property, that we’ll introduce
after stating the following:

Theorem 33. Let f : U → R U ⊂ Rn convex, x0 ∈ U and α = f(x0); then:

f concave ⇒ C+
α := {x ∈ U |f(x) ≥ α} is convex

and
f convex ⇒ C−α := {x ∈ U |f(x) ≤ α} is convex .

Proof. Let’s take x, y ∈ C+
α . By definition of C+

α , f(x) ≥ α, f(y) ≥ α. But then,

f(tx+ (1− t)y)
concavity
≥ tf(x) + (1− t)f(y) ≥ tα+ (1− t)α = α,

which means exactly that

tx+ (1− t)y ∈ C+
α .

Let’s illustrate this: take n = 2:

8If I understand correctly, the point is not “suppress just first row and first column”, but more
generally “suppress the same row and column”

9More informations on Simon and Blume
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x1

x2

{x ∈ U |f(x) = f(x0)︸ ︷︷ ︸
α

}
x0

Upper Contour Set

{x ∈ U |f(x) = f(x0)︸ ︷︷ ︸
α

}

x0

Lower Contour Set

Example 34. u(x, y) = xayb. We know that a + b ≤ (<)1 if and only if u is
(strictly) concave.

On the other hand: consider T : R→ R strictly increasing; then f := T ◦u may
be non-concave, like in the case T (n) = nc, with c > 0, such that (a+ b)c > 1

⇒ f(x, y) = (xayb)c = xacybc

with ac+ bc = (a+ b)c > 1.
From elementary utility theory, we know that every monotone transformation of

a given utility function represents the same preferences order.
From the last inequality, we get f is not concave. Nevertheless, if we consider

the set

{(x, y) ∈ U | f(x, y)︸ ︷︷ ︸
T (u(x,y))

≥ α} = {(x, y) ∈ U |u(x, y) ≥ T−1(α) =: α′ ∈ R} = C+
α′ ,

which is convex when u is concave.

So basically the the upper contour set can be convex even without the function
being concave (the implication given goes in one way). So what is the property of
the function u such that the C+

α are indeed convex? It’s precisely what we define
as quasi-concavity.
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f concave
⇒
6⇐ C+

α convex

m

f quasi-concave

Definition 35. Let f : U ∈ R, U ⊂ Rn convex. Then, f is quasi-concave if C+
α is

convex for any α, that is,

f(x) ≥ α, f(y) ≥ α⇒ f(tx+ (1− t)y) ≥ α∀x, y ∈ U,α ∈ R and t ∈ (0, 1).

If the concluding inequality is strict whenever x 6= y, then f is strictly quasi-concave.

Let’s illustrate this:

x1

x2

x

y

f strictly quasi-concave

x1

x2

x y

f quasi-concave, but not strictly

x1

x2

x

y

f is not quasi-concave

Remark 36.

f quasi-concave

m
f(tx+ (1− t)y) ≥ min{f(x), f(y)}∀x, y,∈ U, t ∈ (0, 1) (*)

Proof. • “⇒”: we know for sure that

f(x) ≥min{f(x), f(y)} =: α

f(y) ≥α.
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Now let’s assume that f is quasi-concave. This implies that f(tx+(1−t)y) ≥
α.

• “⇐”: assume we know f(x) ≥ α, f(y) ≥ α. We need to show that the same
holds for f(tx+ (1− t)y). Now, we know by assumption (see (*)) that this
is ≥ min{f(x), f(y)} ≥ α.

This concept of quasi-concavity is a little bit intricated: how can we characterize
a quasi-concave function’s graph? It is easy in the case n = 1:

x

y

C+
α

f quasi-concave

x

y

f not quasi-concave

Example 37. u(x, y) = xayb, a, b > 0

u(x, y) = α, α > 0⇒ xayb = α ⇐⇒ y =
α

1
b

x
a
b

=: f(x)

The Cobb-Douglas is always strictly quasi-concave. Indeed, let ϕ be the equation
of a level curve:

ϕ′(x) = −a
b
α

1
b x−

a
b−1 < 0

ϕ′′(x) =
(
−a
b
− 1
)

︸ ︷︷ ︸
<0

(
−a
b

)
︸ ︷︷ ︸
>0

α
1
b x−

a
b−2︸ ︷︷ ︸

>0

> 0

⇒ ϕ is strictly convex⇒ u is strictly quasi-concave.

Theorem 38. The C1 function f : U → R, U ⊂ Rn, is quasi-concave if and only if

f(y) ≥ f(x)⇒ Df(x)(y − x) ≥ 0 ∀x, y ∈ U .

Moreover, if

f(y) ≥ f(x), y 6= x⇒ Df(x)(y − x) > 0 ∀x, y ∈ U

holds, then f is strictly quasi-concave.
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Conversely, if f is strictly quasi-concave and Df(x) 6= 0∀x ∈ U , then

f(y) ≥ f(x), y 6= x⇒ Df(x)(y − x) > 0.

The proof is available in the mathematical appendix of the Mas-Colell WG, p.
934.

We will only draw an example with n = 1:

x y

Df(x)

y − x

Theorem 39. The C2 function f : U → R is quasi-concave iff for every x ∈ U and
z ∈ Rn

Df(x)z = 0⇒ zTD2f(x)z ≤ 0.

If D2f(x) is negative definite in the subspace

{z ∈ Rn|Df(x)z = 0}

for every x ∈ U , then f is strictly quasi-concave.

Again, the proof can be found on the Mas-Colell WG, pag. 935.

1.7 The Implicit Function Theorem

Consider the equations

f1(y1, . . . , ym, x1, . . . , xn) =c1

...

fm(y1, . . . , ym, x1, . . . , xn) =cm.

Let y = (y1, . . . , ym), x = (x1, . . . , xn) and c = (c1, . . . , cm). Then, we can
write:  f1(y, x)

...
fm(y, x)

 =: f(y, x) = c :=

 c1
...
cm


where

f : U → Rn, U ⊂ Rm+n.

Then, we write
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Dyf(x, y) :=


∂f1
∂y1

(x, y) . . . ∂f1
∂ym

(x, y)
...

. . .
...

∂fm
∂y1

(x, y) . . . ∂fm
∂ym

(x, y)


︸ ︷︷ ︸

m×m

and

Dxf(x, y) :=


∂f1
∂x1

(x, y) . . . ∂f1
∂xn

(x, y)
...

. . .
...

∂fm
∂x1

(x, y) . . . ∂fm
∂xn

(x, y)


︸ ︷︷ ︸

m×n

,

the two parts of the Jacobian.
Let (y, x) ∈ Rm+n satisfy f(y, x) = c, that is f(x, y) = c.
We want to consider the following problem: can we find, for small variations of

x around x, values of y such that again f(x, y) = c?
In other words, does there exist a function

Rn ⊃ B(x) 3 x g7→ y ∈ B(y) ⊂ Rn

such that
f( g(x)︸︷︷︸

Implicit
function

, x) = c ∀x ∈ B(x)?

Theorem 40 (Implicit Function Theorem). Let U ⊂ Rm+n be open and f : U →
Rm C1. If for a given c ∈ Rn the pair (y, x) ∈ U is such that f(y, x) = c and
det(Dyf)(y, x) 6= 0, then there exist open balls B(x) ⊂ Rn and B(y) ⊂ Rm and
an unique function

g =

g1

...
gn

 : B(x)→ B(y)

such that f(g(x), x) = c ∀x ∈ B(x).
Moreover, g is C1 and

Dg(x)︸ ︷︷ ︸
m×n

= − [Dyf(y, x)]
−1︸ ︷︷ ︸

m×m

Dxf(y, x)︸ ︷︷ ︸
m×n

.

Remark 41. We may not be able to write down explicitly g - we just know it exists.

Proof. We will not show rigorously: assume it indeed exists. Then,

Rn

∈

Rm+n

∈

Rm

∈

B(x) 3 x

h

99
� (g,id)// (g(x), x)

� f // f(g(x), x)
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⇒ h(x) = f(g(x), x)

which by the chain rule gives

Dh(x) = Df(g(x), x)D(g, id)(x)

where

id =

id1

...
idn

 , idi(x) = xi

⇒ Dh(x) =


∂f1
∂y1

. . . ∂f1
∂ym

∂f1
∂x1

. . . ∂f1
∂xn

...
∂fm
∂y1

. . . ∂fm
∂ym

∂fm
∂x1

. . . ∂fm
∂xm





∂g1
∂x1

. . . . . . ∂g1
∂xn

...
. . .

. . .
...

∂gm
∂x1

. . . . . . ∂gm
∂xn

1 0 . . . 0
0 1 . . . 0
...

. . .
. . .

...
0 . . . 0 1


=

(
Dyf(y, x)︸ ︷︷ ︸

m×m

Dyf(y, x)︸ ︷︷ ︸
m×n

)(
Dg(x)}m× n
I}n× n

)
=Dyf(y, x)Dg(x) +Dxf(y, x).

On the other hand:

h(x) = c ∀x ∈ B(x)⇒ Dh(x) = 0︸︷︷︸
m×n

,

so putting the two things together we get

Dyf(y, x)Dg(x) +Dxf(y, x) = 0

⇒Dyf(y, x)Dg(x) +Dxf(y, x) = 0

⇒Dg(x) = −[Dyf(y, x)−1Dxf(y, x)].

17/11/10

Example 42 (The IS-LM model). This is the most well-known simple macroeco-
nomic model. It is given by two equations:

Y =C(Y − T ) + I(r) +G (IS)

MS =PL(Y, r) (LM)

where C is “consumption”, Y is “incoming”, T is “taxes”, G is “governmental
expenditure”, r is “interest rate”, MS is “money supply”, L is a liquidity demand
function, P is “price level”. Also,

40



∂I

∂r
< 0

∂L

∂r
< 0

so overall the effects take those directions:

Y =C(Y − T︸ ︷︷ ︸
+

) + I( r︸︷︷︸
−

) +G

MS =PL( Y︸︷︷︸
+

, r︸︷︷︸
−

).

Y and r are endogenous variables; all the others are exogenous. Hence, with
the notation of the Implicit Function Theorem,

y =(Y, r)

x =(T,G,MS , P )

and

f(y, x) =

(
f1(Y, r, T,G,Ms, P )
f2(Y, r, T,G,Ms, P )

)
=

(
Y − C(Y − T )− I(r)−G

MS − PL(Y, r)

)
=

(
0
0

)
.

Hence, we can define

Y =g1(T,G,MS , P )

r =g2(T,G,MS , P )

and establish

f(g1(T,G,MS , P︸ ︷︷ ︸
x

), g2(T,G,Ms, P︸ ︷︷ ︸
x

), T,G,MS , P︸ ︷︷ ︸
x

= 0)

with

g : R4

g1

g2


→ R2

Assuming that we have are in a given situation - a given combination of variables
values which satisfies both equations - we may want to study comparative statics -
what is the reaction to (small) shocks:

(
∂Y
∂T

∂Y
∂G

∂Y
∂MS

∂Y
∂P

∂r
∂T

∂r
∂G

∂r
∂MS

∂r
∂P

)
=Dg(T,G,MS , P )

=−D(y,r)f(Y, r, T,G,MS , P )−1 ·D(T,G,MS ,P )f(Y, r, T,G,MS , P )

=−
(

1− C ′(Y − T ) −I ′(r)
−P ∂L

∂Y −P ∂L
∂R

)−1

·
(
C ′(Y − T ) −1 0 0

0 0 1 −L(Y, r)

)
10

=
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This is precisely where the condition on the determinant of the square matrix
becomes important:

detDyf(y, x) = (1− C ′(Y − T )︸ ︷︷ ︸
+

)

−P ∂L∂r︸ ︷︷ ︸
+

− I ′(r)︸︷︷︸
−

P
∂L

∂Y︸︷︷︸
+

> 0,

so

Dg(T,G,M
S , P ) =− 1

det

(
−P ∂L

∂r I ′(r)
P ∂L
∂Y 1− C ′(Y − t)

)
·
(
C ′(Y − T ) −1 0 0

0 0 1 −L(Y, r)

)
⇒ ∂Y

∂T
=− 1

det
(−P ∂L

∂r
C ′(Y − T ) + I ′(r) · 0)

=
1

det︸︷︷︸
+

·P ∂L
∂r︸ ︷︷ ︸
−

·C ′(Y − T )︸ ︷︷ ︸
+

≤ 0;

this already explains that an increase in taxes causes a decrease in income.
A similar analysis can be applied to any other combination of variables.
But we still know nothing about the magnitude of such effects. We can try to

estimate the economic functions. More specifically, assume

C(Y − T ) =100 + 0.8(Y − T )

I(r) =500− 50r

L(Y, r) =500 + 0.2Y − 25r;

then

detDyf(y, x) = ((1− 0.8)(−P (−25))− (−50)P · 0.2)) = 15P .

Hence,

Dg =− 1

15P

(
25P −50
0.2P 0.2

)
·
(

0.8 −1 0 0
0 0 1 −L(Y, r)

)
=

(
− 4

3
5
3

10
3P − 10L(Y,r)

3P

− 4
375

1
75 − 1

75P
L(Y,r)
75P

)

Now, we can for instance assume

(Y , r) =(1200, 8.8)

(T ,M
S
, P ) =(400, 400, 520, 1),

verify that f(Y , r, T ,G,M
S
, P ) = 0 and calculate

Dg =

(
− 4

3
5
3

10
3 − 5200

3
− 4

375
1
75 − 1

75
104
15

)
.
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We now want to see a geometric interpretation of the Implicit Function Theorem.
Let f : U → R, U ⊂ R2 open, with (x, y) ∈ U .
Consider the level set (or level curve)

Lf (f(x, y)) := {(x, y) ∈ U |f(x, y) = f(x, y)}.

Let ∂f
∂y (x, y) 6= 0. Then, there exists an open interval B(x) ⊂ R, an open

interval B(y) ⊂ R and a function

g : B(x)→ B(y)

such that
f(x, g(x)) = f(x, y) ∀x ∈ B(x).

It is evident that the assumptions are the ones of the Implicit Function Theorem
(only with x and y reversed to match their usual function in two dimensions).

We now want to study the graph of this function g:

graph(g) ={(x, g(x))|x ∈ B(x)}
={(x, y)|x ∈ B(x), y = g(x)}
={(x, y)|x ∈ B(x), y ∈ B(y) and f(x, y) = f(x, y)}
⊂{(x, y)|(x, y) ∈ U, f(x, y) = f(x, y)}
=Lf (f(x, y)).

This means that the graph of g is a subset of the level curve for f :

x

y

Lf (f(x, y))

y

x

Lf (f(x, y))

graph(g)

B(x)

What is the slope (inclination) of Lf (f(x, y)) at (x, y)?
It is

g′(x) =−
∂f
∂x (x, y)
∂f
∂y (x, y)

=−
(
Dyf(x, y)

)−1
Dxf(x, y).

Can we apply this formula to all points? Not really:
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x

y

Lf (f(x, y))

y

x

∂f
∂y = 0

in this point, we have that the slope is infinite - it cannot be the graph of a
function from x to y, and indeed the condition on the invertibility (which in this
case is simply “difference from 0”) is not respected.

Still in the case of two variables, consider a function

h(x) = f(x, g(x)) = f(x, y)⇒ h′(x) = 0
(∗)
=

∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x))g′(x),

where (∗) is a simple application of the chain rule.
The same can be rewritten as:

h′(x) =
(
∂f
∂x (x, g(x)) ∂f

∂y (x, g(x))
)(

1
g′(x)

)
= Df(x, y)

(
1

g′(x)

)
= 0

Now, we recall that

x · y = ‖x‖‖y‖ cos θ ⇒ cos θ = 0

and that happens for θ = ±π2 = 90◦: x and y are orthogonal.
Coming back to our example, Df(x, y) and (1, g′(x)) are orthogonal:

x

y

y

x x+ 1

90◦

Df(x, y)

1

g′(x)

So the gradient vector Df(x, y) (or ∇f(x, y)) is orthogonal to the level curve
passing through the point (x, y).

This is a general result.
18/11/10
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Alternative method:

f1(y1, . . . , ym, x1, . . . , xn) =c1

...

fm(y1, . . . , ym, x1, . . . , xn) =cm

can be linearly approximated as:

∂f1

∂y1
dy1 + · · ·+ ∂f1

∂ym
dym +

∂f1

∂x1
+ · · ·+ ∂f1

∂xn
dxn =0

...

∂fm
∂y1

dy1 + · · ·+ ∂fm
∂ym

dym +
∂fm
∂x1

+ · · ·+ ∂fm
∂xn

dxn =0.

This last expression can be rewritten in a more concise way:

Dyf(y, x)︸ ︷︷ ︸
m×m

dy1

...
dyn


︸ ︷︷ ︸
m×1︸ ︷︷ ︸

m×1

+Dxf(y, x)︸ ︷︷ ︸
m×n

dx1

...
dxn


︸ ︷︷ ︸
n×1︸ ︷︷ ︸

m×1

= 0︸︷︷︸
m×1

If Dyf(y, x) is invertible, then

dy1

...
dym

 = −
(
Dyf(y, x)

)−1
Dxf(y, x)

dx1

...
dxn

 .

In particular, if dxi = 0 ∀i 6= k, I can obtain some direct result without
doing all the calculations:

dy1

...
dyn

 = − (Dyf(y, x))
−1


∂f1
∂xk

(y, x)dxk
...

∂fm
∂xk

(y, x)dxk

 .

Example 43. Again the IS-LM model:

(
dY
dr

)
=−

(
∂f1
∂Y

∂f1
∂r

∂f2
∂Y

∂f2
∂r

)−1(∂f1
∂T dT
∂f2
∂T dT

)

=− 1

det

(
−p∂L∂r I ′(r)

p ∂L∂Y 1− C ′(Y − t)

)(
C ′(Y − T )dT

0 · dT

)
⇒ dY =

1

det
p
∂L

∂r
C ′(Y − T )dT

=− 4

3
dT .
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Indeed, we can verify that ∂Y
∂T = − 4

3 , as we had already seen.

Some authors will always use the Implicit Function Theorem, other will proceed
as we just did.

Even if we are interested in the effect of only one variable, we still have to
calculate all the matrix to invert: this is an intrinsec need, because of feedback:
variables have an effect one on the other.

2 Static optimization

2.1 Unconstrained optimization

Let

f : U ∈ R, U ⊂ Rn.

Then, x∗ is a

• local maximizer (minimizer) if there is an open ball B(x∗) ⊂ U such that

f(x∗)
(≤)

≥ f(x) ∀x ∈ B(x∗);

• global maximizer (minimizer) if

f(x∗)
(≤)

≥ f(x) ∀x ∈ U .

Theorem 44. Suppose f is C1 and x∗ ∈ Rn is a local maximizer or minimizer of
f . Then,

∂f

∂xi
(x∗) = 0 ∀i, . . . , n

or, in more concise notation,

Df(x∗) = 0(∈ Rn).

Proof. Suppose x∗ is a local maximizer but contrary to our claim

∂f

∂xi
(x∗) = a > 0

for some i. Then, for h sufficiently small we get

A(h) :=
f(x∗ + hei)− f(x∗)

h
>
a

2
.

h

a

a
2 A
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So,

f(x∗ + hei) > f(x∗) +
a

2
h > f(x∗).

This implies that x∗ is not a local maximizer: we have a contradiction.

In the one-dimensional case, it is quite intuitive:

h

a

f

Definition 45.
Df(x) = 0 ⇐⇒ x is a critical point.

By the way, x∗ maximizer ⇒ x∗ is a critical point, but the opposite implication
is not true.

Example 46.

f(x1, x2) = x2
1 − x2

2

⇒Df(x1, x2) = (2x1,−2x2)

⇒Df(0, 0) = (0, 0)

⇒(0, 0) is a critical point for f .

x1

x2

f(0, 0) = 0

++

−

−

Since in every neighborhood of (0, 0) we can easily find point on which f is
smaller or larger, that is neither a local maximum nor a minimum.

Theorem 47. Suppose that f is C2 and Df(x∗) = 0.

(i) If x∗ is a local maximizer, then D2f(x∗) is negative semidefinite.

(ii) If D2f(x∗) is negative definite, then x∗ is a local maximizer.

Proof. Let x ∈ Rn and

ϕ(ε) := f(x∗ + εz), ε ∈ R small

⇒

{
ϕ′(ε) = Df(x∗ + εz)z

ϕ′′(ε) = zTD2f(x∗ + εz)
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We can hence rewrite ϕ using its Taylor expansion:

ϕ(ε) = ϕ(0) + ϕ′(0)ε+
1

2
ϕ′′(0)ε2 +R(ε),

and we know that
R(ε)

ε2

ε→0→ 0.

So,

f(x∗ + εz) = f(x∗) +Df(x∗)zε+ 1
2z
TDf (x∗)zε2 +R(ε)

KS

��

f(x∗ + εz)− f(x∗)
(∗)
= 1

2z
TD2f(x∗)zε2 +R(ε)

Moreover, we know that the left hand side is ≤ 0 if x∗ is a maximizer. So:

1

2
zTD2f(x∗)zε2 +R(ε) ≤ 0,

which in turn we can rewrite as follows:

zTD2f(x∗)z +
2

ε2
R(ε) ≤ 0.

Now: what happens if we let ε tend to 0? We know that the second term tends to
0 too. So:

zTD2f(x∗)z ≤ 0

⇒D2f(x∗) is negative semidefinite.

We have shown part 47 of the theorem. If we now start from the hypothesis
that the Hessian is negative semidefinite, vice versa:

zTD2f(x∗)z < 0 ∀z 6= 0

⇒∃ε > 0 : zTD2f(x∗)z +
2

ε2
R(ε) < 0

(∗)⇒f(x∗ + εz) < f(x∗)

⇒x∗ is a local maximizer.

This proves 47.

So:

D2f(x∗) negative definite

(ii)

��
x∗ local maximizer

(i)

��
D2f(x∗) negative semidefinite

.

We know the first implication cannot be reversed: neither it is possible with the
second one.
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Example 48.

f(x) = x3

⇒

{
Df(x) = 3x2

D2f(x) = 6x⇒ D2f(0) = 0
⇒ D2f(0) is negative semidefinite because zD2f(0)z = 0 ≤ 0.

But: x = 0 is neither a maximum nor a minimum:

x

y
x3

Theorem 49. Any critical point x∗ of a concave function is a global maximizer.

Proof. A previous theorem on concave functions told us that:

f(x) ≤ f(x∗) +����Df(x∗)(x− x∗) ∀x ∈ dom f
KS

��
f(x) ≤ f(x∗) ∀x ∈ dom f

x

y

x∗

Moreover, f strictly concave ⇒ such an x∗ is unique; we don’t have something
like

x

y

x∗

2.2 Constrained optimization

Start with equality constraint:

max f(x)
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subject to

h1(x) = c1
...

hm(x) = cm

h(x) = c ⇐⇒ c ∈ C

where f, h1, . . . , hm : U → R, U ⊂ Rn, n ≥ m and

C := {x ∈ U |hj(x) = cj ∀j = 1, . . . ,m}

is the constraint set.
For instance:

x

y h2

h1

c2

c1

is not a valid example, since C is empty.

Definition 50. x∗ ∈ C is a local constrained maximizer if there is an open ball
B(x∗) ⊂ U such that

f(x∗) ≥ f(x) ∀x ∈ B(x∗) ∩ C.

Definition 51. x∗ ∈ C is a global constrained maximizer if

f(x∗) ≥ f(x) ∀x ∈ U ∩ C.

Theorem 52. Suppose f, h1, . . . , hm are C1, x∗ is a local constrained maximizer
and Dh1(x∗), . . . , Dhm(x∗) are linearly independent vectors ( “constraints qualifi-
cation” condition, or CQ).

Then, there exists µ1, . . . , µn ∈ R (“Lagrange multipliers”) such that

∂f

∂xi
(x∗) =

m∑
j=1

µj
∂hj
∂xi

(x∗) ∀i = 1, . . . , n

or, in more concise notation,

Df(x∗) =

m∑
j=1

µjDhj(x
∗).

Let’s try to illustrate why these numbers should exist.
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Proof. The complete proof can be found on Mas-Colell Winston Green, pp. 956-
957.

Here, we only consider the special case m = 1, n = 2. We have one constraint
only, on two variables:

max
h(x1,x2)=c

f(x1, x2).

x

y

Lh = {h(x1, x2) = c}

fh = {f(x1, x2) = k}x∗

x∗ is the maximizer.
The slope of hg at x∗ is equal to the slope of Lh:

−
∂f
∂x1

(x∗)
∂f
∂x2

(x∗)
= −

∂h
∂x1

(x∗)
∂h
∂x2

(x∗)

⇒ ∃µ ∈ R :
∂f

∂x1
(x∗))µ

∂h

∂x1
(x∗)

and for the same µ:
∂f

∂x2
(x∗) = µ

∂h

∂x2
(x∗).

So

Df(x∗) = µDh(x∗);

this is exactly what we wanted to show.

Back to the general case, or x = (x1, . . . , xn) ∈ dom f and µ = (µ1, . . . , µm) ∈
Rm: define the Lagrange function

L(x, µ) := f(x)−
m∑
j=1

µj [hj(x)− cj ].

Then, we can observe the following thing:

Df(x∗) =
∑m
j=1 µjDhj(x

∗)
KS

��
DxL(x∗, µ) = 0.
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Moreover, we can also notice that

h(x∗) = c ⇐⇒ DµL(x∗, µ) = 0.

Finally, if we want to form the Lagrange conditions, we need just to write the
Lagrange function and put all its partial derivatives equal to 0.

Let’s now discuss the meaning of the Constraint Qualification.
We require that all the gradients are linearly independent.

Example 53. We take n = m = 2.

x

y

h1(x) = c1

h2(x) = c2

x∗

f

Df(x∗)
Dh1(x∗)

Dh2(x∗)

In this case, C = {x∗} and hence x∗ is necessarily a solution to

max
h1(x)=c1,
h2(x)=c2

f(x),

but 6 ∃µ1, µ2 ∈ R such that

Df(x∗) = µ1Dh1(x∗) + µ2Dh2(x∗)

because Dh1(x∗) and Dh2(x∗) are not linearly independent: CQ does not hold.
For the records, this is very rare in economic applications.

So far, we considered constrained maximizations with only equality constraints:
we now face the problem of also inequalities:

max f(x) (P)

subject to

g1(x) ≤ b1
...

gk(x) ≤ bk

 g(x) ≤ b

h1(x) = c1
...

hm(x) = cm

h(x) = c


def⇐⇒ x ∈ C

where f, g1, . . . , gk, h1, . . . , hm : U → R, U ⊂ Rn, n ≥ k +m, k,m ≥ 0.
Now the CQ takes the following form:
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those constraints that hold at x∗ with equality give rise to linearly in-
dependent gradients,

that is, the vectors

{Dgj(x∗)|gj(x∗) = bj} ∪ {Dhj(x∗)|j = 1, . . . ,m}

are linearly independent.
That said, we can state the following:

Theorem 54 (Kuhn-Tucker). Suppose that x∗ is a solution to (P) and CQ is
satisfied at x∗. Then there are multipliers λ ≥ 0, one for each inequality constraint,
and µj ∈ R, one for each equality constraint, such that:

1. For every i = 1, . . . , n:

∂f

∂xi
(x∗) =

k∑
j=1

λj
∂gj
∂xi

(x∗) +

m∑
j=1

µj
∂hj
∂xi

(x∗)

or, in more concise notation,

Df(x∗) =

k∑
j−1

λjDgj(x
∗) +

m∑
j=1

µjDhj(x
∗),

2. For every j = 1, . . . , k
λj︸︷︷︸
≥0

[gj(x
∗)− bj ]︸ ︷︷ ︸
≤0

= 0

(this second condition is called “complementary slackness”).

It’s easy to see that for k = 0 we fall back to the formulae for the case with no
inequalities.

22/11/10
Let’s take a function f of 2 variables. We know that f is quasi-concave ⇐⇒

C+
α is convex. But this is equivalent to Lf (α) being convex:

Lf (α)

C+
α

Indeed,

f(x, y) = α

⇒y = ϕ(x, α)

y′′ > 0⇒ ϕ convex ⇐⇒ Lf (α) convex

We had already seen that in the case of the Cobb Douglas. This method is a
very special case (the function must be in 2 variables and the curve level must be
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representable as a function from one to the other), but it is a special case that will
be very useful in our economic activity - it typically applies to utility functions for
2 goods.

Regarding the equalities and disequalities problem formulated last time, it is
evident that the choice of ≤ instead than ≥ doesn’t imply any loss of generality -
it is sufficient to multiply by −1.

We want to understand why the conditions given are reasonable and what they
mean. We provide a sketch of the proof, illustrating the case n = 2, k = 2, m = 0.

x1

x2

g1(x) = b1

g2(x) = b2
x∗

C

Γ

f(x) = f(x∗)

Df(x∗)
Dg1(x∗)

Dg2(x∗)

In this situation:

• x∗ is the maximum

• Dg1(x∗) and Dg2(x∗) span the cone

Γ := {x ∈ R2|∃λ1, λ2 ≥ 0 with x = λ1Sg1(x∗) + λ2Dg2(x∗)

• Df(x∗) ∈ Γ

Hence, Df(x∗) = λ1Dg1(x∗) + λ2Dg2(x∗) for some λ1, λ2 ≥ 0. This is
precisely what we claim with the Kuhn-Tucker theorem.

In another very special case, consider

max f(x) s.t. g(x) = b;

if Df (x̃∗) 6∈ Γ, then we can “move” a bit in its direction, remaining on the level
curve of g(x):

x1

x2

g1(x) = b1

g2(x) = b2

C

Γ

f(x) = f(x∗)

Dg1(x̃∗)

Dg2(x̃∗)
Df(x̃∗)

x∗
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Df(x̃∗) 6∈ Γ
⇒ it is not a maximizer. x∗ is, and hence by Kuhn-Taker we have the multipliers.
There is a third possibility we must consider:

x1

x2

g1(x) = b1

g2(x) = b2

C

Γ

x∗

x∗ is the maximizer.

Df(x∗) = λ1︸︷︷︸
=0

Dg1(x∗) + λ2︸︷︷︸
=0

Dg2(x∗) = 0

This is an unconstrained maximization problem.
Kuhn-Tucker just joins all the special cases in a single theorem.
Let’s get back to the general case, with the Lagrange function:

L(x, λ1, . . . , λK , µ1, . . . , µm) := f(x)−
k∑
j=1

λj [gj(λ)− bj ]−
m∑
j=1

µj [hj(x)− cj ]

⇒ ∂L

∂xi
=

∂f

∂xi
−

k∑
j=1

λj
∂gi
∂xi
−

m∑
j=1

µj
∂hj
∂xi

= 0

and

λj [gj(x)− bj ] = 0, λj ≥ 0, gj(x)− bj ≤ 0 ∀j = 1, . . . , k

hj(x) = cj ∀j = 1, . . . ,m.

All these together provide the set of Kuhn-Tucker (necessary) conditions.
There is an interesting special case of inequality constraints: non-negativity

constraints, which is very typical in economics (for instance we don’t want prices to
be negative).

xi ≥ 0 for some (/for all) i ⇐⇒ −xi ≤ 0

(where the second line fits in the requirements of the theorem, by just putting, for
some j,

gj(x) = −xi
with bj = 0). However, it is interesting to transform this:
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⇒− λj [gj(x)− bj ]
− λj(−xi) = λjxi.

Moreover, if we rename λj =: νi ⇒ νixi,

⇒L(x, λ1, . . . , λk, µ1, . . . , µm, ν1, . . . , νn)

= f(x)−
k∑
j=1

λj [gj(x)− bj ]−
m∑
j=1

µj [hj(x)− cj ] +

n∑
i=1

νixi

we can express the Kuhn-Tucker conditions as:

∂L

∂xi
=

∂f

∂xi
−

k∑
j=1

λj
∂gj
∂xi
−

m∑
j=1

µj
∂hj
∂xi

+ νi = 0 ∀i = 1, . . . , n (1)

(under the assumption that all of the variables are subject to negativity constraints)
and, for what concerns the complementary slackness condition,

νixi = 0, νi ≥ 0, xi ≥ 0 ∀i = 1, . . . , n (2)

(recall gj = 0).
Moreover, (1) and (2) are equivalent to

∂d

∂x1
≤

k∑
j=1

λj
∂gj
∂xi

+

m∑
j=1

µj
∂hj
∂xi

, (3)

xi ≥ 0

with “≤” being “=” when xi > 0.
Both ways of formulating those conditions are used by different authors. And

this is not the end of the story, since there is a further way of expressing this: (3)
and  ∂f

∂xi
−

k∑
j=1

λj
∂gj
∂xi
−

m∑
j=1

µj
∂hj
∂xi

xi = 0 ∀i = 1, . . . , n.

Example 55.
max f(x1, x2) = x1 + xα2 , α > 0

s.t. p1x1 + p2x2 ≤ I
x1 ≥ 0, x2 ≥ 0

We explicitly write

L(x1, x2, λ, ν1, ν2) = x1 + xα2 − λ(p1x1 + p2x2 − I) + ν1x1 + ν2x2
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and from this function we get the conditions

⇒ ∂L

∂f1
= 1− λp1 + ν1 =0 (1)

∂L

∂x2
= αxα−1

2 − λp2 + ν2 =0 (2)

ν1x2 =0 (3)

ν2x2 =0 (4)

λ(p1x1 + p2x2 − I) =0

λ, ν1, ν2 ≥ 0, x1, x2 ≥0

p1x1 + p2x2 − I ≤0.

Solving this system is not immediately trivial. Can we simplify something?

(1)⇒λ =
1 + ν1

p1
> 0

⇒p1x1 + p2x2 = I. (5)

We can hence consider various cases.

case ν1 ν2 λ (x1, x2) f(x1, x2)
1 0 0 1

8

(
11
8 ,

1
4

)
23
16

2 + 0 3
2 (0, 3) 9

3 0 + 1
8

(
3
2 , 0
)

3
2

4 + + � � �

Assume: α = 2, p1 = 8, p2 = 4, I = 12.

• Case 1: ν1 = ν2 = 0

(1)⇒ λ =
1

p1
=

1

8

(2)⇒ 2x2 =
1

8
· 4 =

1

2
⇒ x2 =

1

4

(5)⇒ 8x1 + 4
1

4
= 12⇒ x1 =

11

8

⇒ f(x, y) =
11

8
+

(
1

4

)2

=
22 + 1

16
=

23

16

This is a possible candidate. We’ll now examine if there are others.

• Case 2: ν1 > 0, ν2 = 0.

(3)⇒ x1 = 0
(5)⇒ 4x2 = 12⇒ x2 = 3

(2)⇒ 2 · 3 = 4λ⇒ λ =
3

2
> 0

(1)⇒ ν1 =
3

2
· 8− 1 = 12− 1 = 11

⇒ f(x, y) = 0 + 32 = 9

9 > 23
16 ⇒ this candidate is already better than the first one.
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• Case 3: ν1 = 0, ν2 > 0.

(4)⇒ x2 = 0
(5)⇒ 8x1 = 12⇒ x1 =

12

8
=

3

2

(1)⇒ 8λ1 = 1⇒ λ =
1

8
> 0

(2)
− 1

8
· 4 + ν2 = 0⇒ ν2 =

1

2

⇒ f(x, y) =
3

2

This is uninteresting. But there is still one case to consider.

• Case 4: ν1 > 0, ν2 > 0.

(3)⇒ x1 = 0, (4)⇒ x2 = 0

(5)⇒ 0 + 0 = 12

and from this contradiction we know that this case provides no candidates

So by looking at the table we filled, we get that the winner is

(x∗1, x
∗
2, λ
∗, ν∗1 , ν

∗
2 ) =

(
0, 3,

3

2
, 11, 0

)
.

We see that this is a so called corner solution: x∗1 = 0. This means that without
Kuhn-Tucker (applying the simple Lagrange theorem, or studying the marginal rate
of substitution), we would have never found this result.

We may guess under what conditions those necessary conditions become suffi-
cient. To answer, recall

x · y = ‖x‖‖y‖ cos θ ⇒ sign(x · y) = sign(cos θ)

θ

cos(θ)

We see that for θ lower than 90◦, the sign is always positive, and it is negative
otherwise.

x

y
cos θ > 0

y
cos θ < 0
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Theorem 56. Suppose there are no equality constraints and that every function gj
is quasi-convex.

Suppose also that the objective function f satisfies, for all x, y ∈ dom f , x 6= y:

f(y) > f(x)⇒ Df(x)(y − x) > 0 (*)

Then, if x∗ ∈ C satisfies the Kuhn-Tucker conditions, it follows that x∗ is a maxi-
mizer.

Remark 57. f is quasi-convex ⇐⇒ C−α convex ∀α

Proof. Suppose, to the contrary, that there exists y ∈ C such that f(y) > f(x∗).

y ∈ C ⇒ gj(y) ≤ bj ∀j = 1, . . . , k

moreover,
Df(x∗)(y − x∗) > 0

by (∗). Now,

gj(y) ≤ bj
gj quasi-convex

}
⇒ Dgj(x

∗)(y − x∗) ≤ 0 ∀j = 1, . . . , k

x1

x2

gj(x) = bj

Dgj(x
∗)

C−bj

y

x∗

So

Df(x∗)(y − x∗)
Kuhn-
Tucker⇒

h∑
j=1

λj Dgj(x
∗)(y − x∗)︸ ︷︷ ︸
≤0

≤ 0

which is a contradiction to (∗).

23/11/2010
To this point, we have expressed the Kuhn-Tucker theorem in the most general

form.

Remark 58. 1. Condition (∗) is satisfied when f is concave or when f is quasi-
concave and Df(x) 6= 0 ∀x ∈ dom f .

2. Condition (∗) cannot be dispensed with.
Let’s consider point (1), with f concave:
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xy

y − x

If instead f is quasi-concave,

Df(x) 6= 0 ∀x ∈ dom f

f(y) > f(x)
quasi-concavity⇒ Df(x)(y − x) ≥ 0

If Df(x)(y − x) = 0, then

Df(x) and (y − x) are orthogonal

⇒f(y) ≤ f(x),

as we can verify with a picture:

x1

x2

C+
αx

y

Df(x)

For what concerns (2), given f : R→ R and g : R→ R
as follows:

g

f

xx0

max f(x) subject to g(x) ≤ 0 ⇐⇒ x ≤ x⇒ x∗ = x.

Kuhn-Tucker:

{
L(x, λ) = f(x)− λg(x)⇒ ∂L

∂x = f ′(x)− λg′(x) = 0

λg(x) = 0

x0 and λ = 0 satisfy Kuhn-Tucker... but x0 is not a maximizer.
This is possible because (∗) is violated:
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f(x) > f(x0) 6⇒ Df(x0)︸ ︷︷ ︸
f ′(x0)=0

(x− x0) > 0

This is enough for the sufficiency of Kuhn-Tucker conditions. What about
unicity? We can show the following:

Theorem 59. Suppose that in the general format (p) of the problem, the constraint
set C is convex and the objective function f is strictly quasi-concave.

Then, the global constrained maximizer is unique.

Proof. Let x′ 6= x′′ be both maximizers.

⇒ x := tx′ + (1− t)x′′, t ∈ (0, 1)

f(x′) = f(x′′), x′ 6= x′′

⇒ f(x) > f(x′)

because of strict quasi-concavity of f .

x1

x2

C+
α

x′

x′′

x

Example 60. f(x1, x2) = x1 + xα2 for α > 0, x1, x2 ≥ 0.
Let

f(x1, x2) = a > 0

⇒x1 + xα2 = a

⇐⇒ x2 = (a− x1)
1
α = ϕ(x1)

⇒


ϕ′(x1) = 1

α (a− x1)
1
α−1(−1) < 0

ϕ′′(x1) =
(

1
α − 1

)
1
α (a− x1)︸ ︷︷ ︸

>0

)
1
α−2(−1)2

1

α
− 1 > 0 ⇐⇒ α < 1 ⇐⇒ ϕ strictly convex ⇐⇒ f strictly quasi-concave.

x1

x2

a
1
α

a

C+
α
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Df(x1, x2) =
(
1, αxα−1

2

)
6= (0, 0), so it is clear that this function never has a

gradient equal to 0, so it satisfies our conditions for sufficiency and for uniqueness
(for α < 1): condition (∗) in the corresponding theorem is satisfied if α ≤ 1 and
the solution is unique if α < 1.

maxx1 + xα2

s.t. p1x1 + p2x2 ≤ I

x1, x2 ≥ 0

and let α = 1
2 , p1 = 8, p2 = 4, I = 12.

We could now setup a table with 4 cases. But that may be not worthwhile.

• Case 1 : ν1 = ν2 = 0.

(1)⇒λ =
1

8

(2)⇒ 1

2
x
− 1

2
2 − 1

8
· 4 = 0

⇐⇒ x
− 1

2
2 = 1 ⇐⇒ 1

√
x2

= 1 ⇐⇒ x2 = 1

(5)⇒8x1 + 4 = 12 ⇐⇒ x1 = 1

This is the only solution: (x∗1, x
∗
2, λ

,ν∗1 , ν
∗
2 ) =

(
1, 1, 1

8 , 0, 0
)
.

Because of the stated unicity conditions, we know all other cases should bring to
contradictions.

We were lucky in find the solution at the first case... but on average, the new
theoretic results we know save us 50% of time!

We want to elaborate a bit further on this case: can we always be sure we get
an interior solution just because α = 1

2 ?
Let us assume

α =
1

2
, p1 = 15, p2 = 3, I = 12;

is the optimum still interior?

• Case 1 : ν1 = ν2 = 0. As before,

(1)⇒λ =
1

15

(2)⇒ 1

2
x
− 1

2
2 − 1

15
· 3 = 0

⇐⇒ 1
√
x2

=
2

5
⇒ x2 =

25

4

(5)⇒15x1 + 3 · 25

4
= 12

⇐⇒ x1 =
12− 75

4

15
=

48− 75

15 · 4
< 0

Since this is not the right case, the solution will not be interior.
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• Case 2 : ν1 > 0, ν2 = 0

(3)⇒x1 = 0
(5)⇒ 3x2 = 12

⇐⇒ x2 = 4
(2)⇒ 1

2
· 4− 1

2 = 3λ

⇒λ =
1

12
> 0

(1)⇒ ν1 = 15
1

12
− 1 =

1

4
> 0;

because of the unicity, the solution is

(x∗1, x
∗
2, λ
∗, ν∗1 , ν

∗
2 ) = (0, 4,

1

12
,

1

4
, 0).

Graphically,

f(1, 1) = 1 + 1
1
2 = 2

f(0, 4) = 0 + 4
1
2 = 2

which means that the change in prices didn’t imply a change in utility for the
consumer: he was able to keep the same by changing the consumption bundle.

f(x1, x2) = x1 + x
1
2
2 = 2⇒ x2 = (2− x1)2 =


4 if x1 = 0

1 if x1 = 1

0 if x1 = 2

So if we call this function ϕ(x1), we get

ϕ′(x1) = 2(2− x1)(−1) < 0 =


−4 if x1 = 0

−2 if x1 = 1

0 if x1 = 2

For what concerns the budget lines,

B1 :8x1 + 4x2 = 12

B2 :15x1 + 3x2 = 12.

The slopes of the two budget constraints are respectively −2 and −5. While in
the first case the solution will be where ϕ is tangent to the budget constraint - that
is, ϕ′(x1) = −2, there is no point such that ϕ′(x1) = −5, so we have necessarily a
corner solution.
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x1

x2

2

1

1

4

3
2

3

B1

4
5

B2

max if p1 = 8, p2 = 4

This is not an interior solution - if the consumer could buy a negative quantity
of good 1, he would. This is not an easy predictable result - even in such trivial
setups - so the Kuhn-Tucker theorem provides a crucial tool.

There is still another situation, namely

α = 2, p1 = 8, p2 = 4, I = 14⇒ x∗1 = 0, x∗2 = 3;

illustrate this as an exercise.
It is necessary to find the level curve and understand which are the three candi-

dates (the function is not quasi-concave), what they mean. . .

Constraint qualification: in practice, this is a topic of almost no relevance, but
once in life we will still do this: analyze the constraint functions and see if they are
linearly independent.

p1x1 + p2x2 ≤I, x1 ≥ 0, x2 ≥ 0

g1(x1, x2) =p1x2 + p2x2

g2(x1, x2) =− x1

g3(x1, x2) =− x2

⇓
Dg1(x1, x2) =(p1, p2)

Dg2(x1, x2) =(−1, 0)

Dg3(x1, x2) =(0,−1).

x1

x2

g1(x1, x2) = I
g2(x1, x2) = 0

g3(x1, x2) = 0
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It is evident that we can never satisfy all 3 constraints: at most 2 of them can
be binding simultaneously ⇒ I always need to check at most 2 of the gradients
together. Now: the first two (for p2 6= 0) obviously are, and similarly it is easy to
verify the other two pairs, for p1, p2 > 0. And this is all we have to verify: CQ is
satisfied.

This is all we had to say about optimization in the narrow sense, but this has a
very important implication in economics. . .

2.3 The Envelope Theorem

We already saw that by changing the conditions, the solutions of optimization prob-
lems can change in an apparently unforecastable way: we want to now study how
the maximizer and the maximum value change as one or several of the parameters
(such as bj or cj) change.

Formally, set

f,
g1, . . . , gk,
h1, . . . , hn

: U ×A // R

(x, a)

∈

where U ⊂ Rn, A ⊂ Rs.
The problem, for a given a ∈ A, is:

max
x

f(x, a)s.t. g1(x, 1) ≤0

...

gk(x, a) ≤0

h1(x, a) = 0

...

hm(x, a) = 0.

This form of the constraints is no restriction of generality as any equation

h̃(x) = c

can be rewritten as
h(x, c) = h̃(x)− c = 0.

The conditions on g1, . . . , gk, h1, . . . , hm can be summarized as

x ∈ C(α).

Let’s further define

v(a) := max{f(x, a)|x ∈ C(a)} = f(x∗(a), a)

(where x∗ indicates the maximizer or maximizers), the value function.
Our goal is to understand how v(a) changes as a changes.
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Theorem 61 (Envelope theorem). Assume the value function v(a) is differentiable
at a ∈ A, and that λ1, . . . , λk, µ1, . . . , µm are the values of the Lagrange multipliers
associated with the maximizer x∗. Then, we have the following result:

∂v

∂aq
(a) =

∂f

∂aq
(x∗(a), a)−

k∑
j=1

λj
∂gj
∂aq

(x∗(a), a)−
m∑
j=1

µj
∂hj
∂aq

(x∗(a), a),

or, in more concise notation,

Dv(a) = Daf(x∗(a), a)−
k∑
j=1

λjDagj(x
∗(a), a)−

m∑
j=1

µjDahj(x
∗(a)),

where obviously Da is the derivative of D only with respect to a (not x).

Proof. Recall that we have

a � //

∈

(x∗(a), a) � //

∈

f(x∗(a), a) = v(a)

∈
Rs Rn+s R

∂v

∂aq
(a) =

n∑
i=1

∂f

∂xi
(x∗(a), a)

∂x∗i
∂aq

(a) +
∂f

∂aq
(x∗(a), a)

Kuhn-Tucker
=

∂f

∂aq
(x∗(a), a) +

n∑
i=1


 k∑
j=1

λj(x
∗(a), a) +

m∑
j=1

µj
∂hj
∂xi

(x∗(a), a)

 ∂x∗i
∂aq

(a)


=
∂f

∂aq
(x∗(a), a) +

k∑
j=1

λj

n∑
i=1

∂gj
∂xi

(x∗(a), a)
∂x∗i
∂aq

(a) +

m∑
j=1

µj

n∑
i=1

∂hj
∂xi

(x∗(a), a)
∂x∗i
∂aq

(a).

We know, from the formulation of the problem, that

hj(x
∗(a), a) = 0 ∀a ∈ A, ∀j = 1, . . . , n,

so zj(a) := hj(x
∗(a), a) is constant in a. So:

0 =
∂zj
∂aq

(a) =

n∑
i=1

[
∂hj
∂xi

(x∗(a), a)
∂x∗i
∂aq

(a)

]
+
∂hj
∂aq

(x∗(a), a)

⇐⇒
n∑
i=1

[
∂hj
∂xi

(x∗(a), a)
∂x∗i
∂aq

(a)

]
= −∂hj

∂aq
(x∗(a), a) ∀j = 1, . . . ,m.

What we did for equality constraints, we can obviously do it with inequality
constraints:

n∑
i=1

∂gj
∂xi

(x∗(a), a)
∂x∗i
∂aq

(a) =− ∂g

∂aq
(x∗(a), a)

∀a ∈ A,∀q = 1, . . . , s, ∀j = 1, . . . , k s.t. gj(x
∗(a), a) = 0;
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hence, we can now put things together as follows:

∂v

∂aq
(a) =

∂f

∂aq
(x∗(a), a)−

k∑
j=1

λj
∂gj
∂aq

(x∗(a), a)−
m∑
j=1

µj
∂hj
∂aq

(x∗(a), a)

But what happens if we do not have the equality? The corresponding λj is 0, so
the second term is not relevant.

This is precisely what we wanted to show.

To get a better understanding of the significance of this, we’ll look at examples.
But first, let’s make a

Remark 62.
v(a) = f(x∗(a), a)

can be rewritten in a more complicated way as

f(x∗(a), a)−
k∑
j=1

λ∗j (a)gj(x
∗(a), a)−

m∑
j=1

µ∗j (a)hj(x
∗(a), a)

since the hj are null, and if the gj are smaller than 0, the corresponding λ are 0.
So we can reformulate as:

L(x∗(a), λ∗(a), µ∗(a), a),

the Lagrange function.
So the Envelope Theorem says

∂v

∂aq
=

∂L

∂aq
(x∗(a), λ∗(a), µ∗(a), a)

or in other terms:

Dv(a) = DaL(x∗(a), λ∗(a), µ∗(a), a).

Example 63. Let n = s = 1, k = m = 0 (no constraints).
This means that

v(a) = max
x

f(x, a)

=f(x∗(a), a)

envelope
theorem⇒ v′(a) =

∂f

∂a
(x∗(a), a)

while simply applying the chain rule would have given us:

v′(a) =
∂f

∂x
(x∗(a), a)

∂x∗

∂a
(a) +

∂f

∂a
(x∗(a), a);

the two expressions must be equal, and this is true indeed, since we know that in
an unconstrained maximum the partial derivatives (∂f∂x (x∗(a), a)) must be = 0.
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Of course, given any a,

v(a) = f(x∗(a), a) ≥ f(x, a) ∀x

aa0

v(a0)

f(x∗(a0), ·)
a1

v(a1)

f(x∗(a1), ·)

a2

v(a2)

f(x∗(a2), ·)

envelope
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24/11/10
Typical economic interpretations of the envelope theorem are the distinctions

between short run and long run curves. For instance, in the above, a0 would be the
stock of capital, which doesn’t change in the immediate but will change in time if
x (the labour force) changes; then, day by day, the optimum will be reached on the
current value on a, and the function of production (v) in time is the envelope.

Example 64. Let’s take n = s = 1 as before, but now k = 0, m = 1.

max f(x) s.t. h(x, c) = h̃(x)− c = 0

⇒v′(c) = −µ ∂h
∂c

(x∗(c), c)︸ ︷︷ ︸
=−1

= µ

Example 65. A similar thing happens if we add an inequality constraint:

n = s = 1, k = 1, m = 0

max f(x) s.t. g(x, b) = g̃(x)− b ≤ 0

⇒ v′(b) = −λ ∂g
∂b

(x∗(b), b)︸ ︷︷ ︸
=−1

= λ

{
= 0 if g(x∗(b), b) < 0

≥ 0 if g(x∗(b), b) = 0
.

Example 66.

max f(x1, x2) = x1 + xα2

s.t. p1x1 + p2x2 ≤ I
x1 ≥ 0, x2 ≥ 0

where now

a =(α, p1, p2, I)

⇒v(α, p1, p2, I)

⇒ ∂v

∂aq

E.T.
=

∂f

∂aq
− λ ∂

∂aq
(p1x1 + p2x2 − I︸ ︷︷ ︸

g

)

⇒ ∂v

∂α
(x1 + xα2 ) = xα2 lnx2

∂v

∂p1
= −λx1 ≤ 0

(if prices rise, the consumer gets hurt, and he gets hurt even more if he used to
consume much of that good). Analogously,

∂v

∂p2
= −λx2 ≤ 0

∂v

∂I
= −λ(−1) = λ > 0;

this is the marginal utility of money, which is clearly positive.11

11It’s clear that here we are giving a cardinal, not just ordinal, meaning to the utility.
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Remark 67. We always put xi ≥ 0 just because it’s what is most interesting for
us, thinking to economic applications.

Example 68. Let’s consider a profit function Π(k, l) = 16k
1
2 l

1
2 − 2k − 4l.

We want to

max Π(k, l) s.t. k ≤ k,

where the latter is a capacity constraint. We set up the Lagrange function:

L = 16k
1
2 l

1
2 − 2k − 4l − λ(k − k)

∂L

∂K
= 8k−

1
2 l

1
2 − 2− λ (1)

= 0

∂L

∂l
= 8k

1
2 l−

1
2 − 4

(2)
= 0

λ︸︷︷︸
≥0

(k − k)︸ ︷︷ ︸
≤0

(3)
= 0.

We can write condition (2) as follows:(
k

l

) 1
2

=
4

8
=

1

2

⇐⇒
(
l

k

) 1
2 (4)

= 2

(1)⇒
(
l

k

) 1
2

=
2 + λ

8

⇒ λ = 14 > 0
(3)⇒ k∗ = k.

Now, this allows us also to determine l∗, because

(4)⇒l∗ = 4k

⇒Π∗ = Π(k∗, l∗) = 16k
1
2 (4k)

1
2 − 2k − 4 · 4k

= 32k − 18k = 14k = v(k)

which is the value function, which shows how k influences the profit.
We can hence calculate the derivative:

v′(k) = 14

and observe that it is equal to λ. That is of course not by chance.
Economists think of marginal increase as a one unit increase. So Π∗ increases,

when we increase k from k to k + 1, from 14k to 14k + 1.
This means that if the firm can buy a new machine to increase k by one, it will

buy it only if the machine costs at most 14, which is the utility of one more unit of
capital.

14 is called the shadow price. That’s why we will often call λ “shadow price”
even in problems in which multipliers have nothing to do with prices.

After having sufficiently illustrated the Envelope Theorem, we can switch to the
new part:
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3 Correspondences and related theorems

3.1 Continuity concepts of correspondences

Example 69. Let’s consider our - by now very familiar - example of a consumer,
but with a specificity: the exponent is 1:

maxx1 + x2 s.t. p1x1 + p2x2 ≤ I, x1, x2 ≥ 0.

The solution x∗1 is x∗1(p1, p2, I) (for i = 1, 2). In particular, if we concentrate
on

x∗1(p1, p2, I)

where p2 and I are, for the moment, considered as fixed ⇒ x∗1 = x∗1(p1).

x∗1(p1)


= I

p1
if p1 < p2

∈
[
0, Ip1

]
if p1 = p2

= 0 if p1 > p2

but this is not so nice, because that is no more a function, so we can not treat
it with the mathematical tools seen so far. We will have to generalize (some of)
them.

Definition 70. Given X ⊂ Rk, a correspondence f : X → Y ⊂ Rm is a rule that
assigns to every x ∈ X a set f(x) ⊂ Y .

Remark 71. If f(x) is a singleton ∀x ∈ X, that is f(x) = {y}, then f can be
identified with a function in the usual sense, that is

f(x) = {y} ⇐⇒ f(x) = y

Example 72. Let’s take again the previous case: we have seen that x∗1(p1) was not
determined for p1 = p2; we can rewrite that as follows:

x∗1(p1) =


{
I
p1

}
if p1 < p2[

0, Ip1

]
if p1 = p2

{0} if p1 > p2,

keeping in mind that this is a correspondence.

Since continuity is a crucial property when working with functions, we would
like to extend the concept to correspondences:

Definition 73. Given X ⊂ Rn and the closed set Y ⊂ Rm, the correspondence

f : X → Y

has a closed graph if, for any two sequences {xn} in X and {yn} in Y with
xn → x ∈ X, yn → y and yn ∈ f(xn) for every n, we have

y ∈ f(x).
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f is upper hemicontinuous (“uhc”) if it has a closed graph and the images of
compact12 sets are bounded, that is for any compact set U ⊂ X, the set

f(U) := {y ∈ Y |y ∈ f(x) for some x ∈ U}

is bounded.

Remark 74. If Y is compact, then:

f has a closed graph ⇐⇒ f uhc.

We can now try to illustrate what uhc means:

Example 75.
X = [0, 1], Y = [0, 3].

(a)
x

y

1

2

1
2

3

Gf

x 1

f
(

1
2

)
= {2}

(x, y)

Consider (x, y) s. t. x = 1
2 , y ∈ (1, 2) ⇒ (x, y) 6∈ Gf , take {xn} → x,

{yn} → y s.t. yn ∈ f(xn)∀n⇒ y 6∈ f(x).

So f is not uhc.

(b) f would be uhc if f( 1
2 ) = [1, 3]:

x

y

1

1
2

2

3

Gf

1

Remark 76. If f(x) = {y} = y is a function, then

f uhc⇒ f continuous,

12A compact set is a closed and bounded set.
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because

xn //
_

��

x_

��
f(xn) //

=

f(x)

=

yn // y.

This helps us see correspondences as a generalization of functions.

However, there is another way to generalize the concept of continuity:

Definition 77. Given X ⊂ Rk and Y ⊂ Rm compact, the correspondence f : X →
Y is lower hemicontinuous (“lhc”) if, for every sequence {xn} with xn → x ∈ X
and every y ∈ f(x) we can find a sequence {yn} in Y with yn → y and yn ∈ f(xn)
for all n.

Let’s try to illustrate this:

xn //
_

��

x_

��
f(xn) f(x)

∃yn

∈

// y;

∈

knowing that f (a function) is lhc means:

xn //
_

��

x_

��
f(xn) // f(x)

∃yn

=

// y.

=

x

y

1

1
2

2

3

Gf

1

(x, y)
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Consider xn →
(

1
2

)−
.

y ∈ f(x), 1 < y < 2
yn ∈ f(xn)⇒ yn → 2 6= y.
So yn 6→ y ⇒ f is not lhc.
We may wonder if the function of the case (a), in which f

(
1
2

)
= {2}, is lhc. . . it

is.13

Definition 78. A correspondence f is continuous if f is uhc and lhc.

Example 79.
x

y

x

A continuous correspondence.

Example 80.

x∗1(p1) =


{
I
p1

}
if p1 < p2[

0, Ip1

]
if p1 = p2

{0} if p1 > p2,

p2
x

y

Gx∗1

Our function is not lhc - see the red sequence. However, it is uhc - intuitively,
it is not possible to approach a point outside the graph from inside the graph.

We will see next if uhc is considered “nice enough” for our economic purposes
(if with it it is feasible to find equilibria, applicate fixed point theorems. . . )

25/11/2010

3.2 Theorem of the maximum

Let’s look at the problem

13Notice that the circled points
(
1
2
, 3

)
and

(
1
2
, 1

)
are excluded from Gf .
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max
x

f(x, a) s.t. g(x, a) ≤ 0

h(x, a) = 0

where the functions can obviously be in an arbitrary number of variables.
And let C(a) be the set of points satisfying those conditions.
Let moreover x∗(a) be the solution of the problem, and

v(a) = f(x∗(a), a).

How fundamental are the assumptions about continuity and differentiability of
functions? That is the content of the

Theorem 81 (Theorem of the Maximum). Suppose that the constraint correspon-
dence

A
C // Rn

a � //

∈

C(a)

∈

is continuous and f is a continuous function. Then, the maximizer correspondence

A
C // Rn

a � //

∈

x∗(a)

⊂

is (not continuous, as we would hope, but. . . ) uhc and the value function

A
v // R

a � //

∈

v(a)

∈

is indeed continuous.

Example 82. It is sufficient to remind yesterday’s example:

maxx1 + x2

s.t. p1x1 + p2x2 ≤ I x1, x2 ≥ 0

p2
x

y

Gx∗1
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and remind the function is uhc but not lhc. . . though it is easy to see that

a = (p1, p2, I) � // C(a)

=

{(x1, x2)|p1x2 + p2x2 ≤ I, x1 ≥ 0, x2 ≥ 0}

is indeed continuous.

p2
x1

x2

I
p1

I
p2

C(a)

Proof. Consider two sequences an → a ∈ A and xn → x ∈ Rn, with xn ∈ x∗(an)
for each n.

We want to show that the maximizer correspondence is uhc. This means we
must show (from the definition of “uhc”) that x ∈ x∗(a).

We know that xn ∈ x∗(an), and that obviously implies xn ∈ C(an). But we
know that C is continuous (and, in particular, is uhc) and hence x ∈ C(a). Let
y ∈ C(a); again, since C is (continuous, and hence) lhc, we get

∃yn ∈ C(an) ∀n

s.t. yn → y.

However, since xn is a maximizer, we deduct that

f(yn, an) ≤ f(xn, an) ∀n

⇒ f(yn, an)
f cont. // f(y, a)

f(xn, an)

≥

f cont. // f(x, a)

≥

⇒f(y, a) ≤ f(x, a)

⇒x ∈ x∗(a) :

this proves the property of the uhc of the correspondence... and we already know
this is the strongest continuity result that we can get: we must live witht the fact
that the demand correspondence is not necessarily lhc.

But we will now see this is not too bad. . .
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3.3 Fixed-point Theorems

Example 83. Consider a given market price, for some good,

pt+1 =
D(pt)

S(pt)
· pt =: f(pt)

where D and S are respectively demand and supply of the good. Obviously,

pt+1 = pt ⇐⇒ D(pt) = S(pt) ⇐⇒ pt = pt+1 = f(pt),

which is a market equilibrium. In that case, pt = p∗ is a fixed point of the function
f .

In general, equilibria of economic models can always be seen as fixed points of
some functions.

Example 84. Consider an economy with n markets (commodities). Consider the
aggregate excess demand correspondence

X
z // Rn

p

∈

� // z(p)

⊂

= D(p)− S(p)

.

p∗ is a general equilibrium if Rn 3 0 ∈ z(p∗).
Now, let f(p) := z(p) + p (for each element in the set z(p), we add p.

x

y

z(p)

z(p) + p

p

Finally, p∗ is a general equilibrium if and only if

0 ∈ z(p∗)
⇐⇒ p∗ ∈ z(p∗) + p∗

⇐⇒ p∗ ∈ f(p∗)

⇐⇒ p∗ is a fixed point of f .

In general,

Definition 85. Let f : X → X ⊂ Rn be a correspondence: x ∈ X is a fixed point
of f if x ∈ f(x).

It is evident that this is the analogous of the definition of fixed point of a function
- in that case, x = f(x).
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Remark 86. Gerard Debreu obtained a Nobel Prize because he was able to find a
general equilibrium. . . in other words, to find a fixed point.

The term that becomes 0 in the fixed point is the excess demand and supply.
This relation between the economic concept of equilibrium and the mathematical

concept of fixed points makes it natural for us to investigate when it is the case
that a given correspondence admits a fixed point: fixed point theorems.

Theorem 87 (Kakutani’s (Brouwer’s) Fixed Point Theorem). Suppose that X ⊂
Rn is a non-empty, compact, convex set and

f : X → X

is an uhc correspondence (function), with f(x) 6= ∅ and f(x) convex for all x ∈ X.14

Then, f has a fixed point.

The proof can be found in hundreds of volumes. . . we just wan to get a bit of
intuition.

• Case 1 : f is a function

x

X

X

f(x) = x

f(x)

x∗
x

X

X

f(x) = x

f(x)

discontinuity

• Case 2 : f is a correspondence

x

X

X

f(x) = x

f(x)

x∗
x

X

X

f(x) = x

f(x)

non-convex

4 Dynamics

4.1 Difference equations

Example 88. Consider money in a bank account at given moments in time:

yn+1 = yn + ρyn = (1 + ρ)yn

14Both properties are trivially true if f is a function
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where

yn = currency units in the bank account in period n

ρ = interest rate per period.

Then, a natural question is: given y0, ρ, what is yn?
Of course, that it easy, because

y1 =(1 + ρ)y0

y2 =(1 + ρ)2y0

. . .

yn =(1 + ρ)ny0;

the above is an example of a linear difference equation, that we write as

yn+1 = ayn, a ∈ R
and the solution is

yn = any0.

Things become a bit more interesting if we consider a system of two linear
difference equations, that is:

xn+1 =axn + byn

yn+1 =cxn + dyn.

This is the problem we want to solve. Let’s first introduce a notation:

zn+1 :=

(
xn+1

yn+1

)
=

(
a b
c d

)
︸ ︷︷ ︸

A

(
xn
yn

)
= Azn.

In the case b = c = 0, there is no interdependence between the two variables, we
fallback to the previous case and we say the equations are uncoupled.

If instead b 6= 0 or c 6= 0 (or both), then we must proceed in a different way.
We will use the concept of eigenvalues and eigenvectors.

Let ri and vi, i = 1, 2, . . . be the eigenvalues and eigenvectors corresponding
to the matrix A, that is,

Avi = rivi ∀i = 1, 2

We can rewrite this as follows:

(
a b
c d

)(
vi1
vi2

)
=

(
rivi1
r2vi2

)
∀i = 1, 2

⇐⇒
(
a b
c d

)(
v11 v21

v12 v22

)
=

(
r1v11 r2v21

r1v12 r2v22

)
=

(
v11 v21

v12 v22

)(
r1 0
0 r2

)
⇐⇒ AP = PD
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where

P =

(
v11 v21

v12 v22

)
,

(
r1 0
0 r2

)
.

If P−1 exists (that is, detP 6= 0), then

P−1AP = D;

then set
Zn := P−1zn ∀n

and hence

Zn+1 =P−1zn+1 = P−1Azn

=P−1APZn = DZn.

Then, if we set

Zn =

(
Xn

Yn

)
∀n,

we obtain (
Xn+1

Yn+1

)
= D

(
Xn

Yn

)
⇐⇒

(
Xn+1

Yn+1

)
=

(
r1 0
0 r2

)(
Xn

Yn

)
;

this is an uncoupled system in Xn, Yn, with solutions

Xn =rn1X0

Yn =rn2Y0.

This is great. . . but doesn’t give us the values we wanted to know. How can we
get back xn and yn? Recall(

xn
yn

)
=zn = PZn

=

(
v11 v21

v12 v22

)(
rn1X0

rn2Y0

)
=rn1X0

(
v11

v12

)
+ rn2Y0

(
v21

v22

)
.

What can we say about X0 and Y0? By varying them, we get all possible
solutions to the system

zn+1 = Azn. (*)

Therefore, setting c1 = X0 and c2 = Y0, v1 =

(
v11

v12

)
and v2 =

(
v21

v22

)
, we get the

general solution to (*) as

zn = c1r
n
1 v1 + c2r

n
2 v2 ∀n.

80



In fact:

zn+1 =c1r
n+1
1 v1 + c2r

n+1
2 v2

=c1r
n
1 · r1v1 + c2r

n
2 · r2v2

=c1r
n
1Av1 + c2r

n
2Av2

=A(c1r
n
1 v1 + c2r

n
2 v2)

=Azn;

so whatever are c1 and c2, this expression solves indeed our problem.
That said, I will want to have a specific solution, with a given value for x0 and

a given value for y0. How can I get that? Before we find out, let’s state what we
obtained, in a more general case:

Theorem 89. Let A be a k × k matrix with k distinct real eigenvalues r1, . . . , rk
and corresponding eigenvectors v1, . . . , vk. Then the general solution of the system
of difference equations

zn+1 = Azn

is

zn = c1r
n
1 v1 + · · ·+ ckr

n
k vk.

Now let’s come back to the problem of putting desired initial values: if x0 and
y0 are given, then(

c1
c2

)
=

(
X0

Y0

)
= Z0 = P−1z0 =

(
v11 v21

v12 v22

)−1(
x0

y0

)
.

Next time, we shall consider an example.
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29/11/2010
We have already done the major theoretical part of the topic of difference equa-

tions, and seen more in detail the case of a system of two equations.
We will now see an

Example 90. Let

xn+1 = −xn + 3yn
yn+1 = 2xn

}
⇒A =

(
−1 3
2 0

)
⇒Avi = rivi, i = 1, 2

⇒(A− riI)vi = 0, i = 1, 2

Now,

det(A− rI) = det

(
−1− r 3

2 −r

)
=(1 + r)r − 6 = r2 + r − 6

=(r + 3)(r − 2) = 0

and from this it is obvious which are the eigenvalues: r1 = −3, r2 = 2.
From them, we can find the eigenvectors from

(A− riI)vi = 0, i = 1, 2

⇒(A− r1I)v1 =

(
−1 + 3 3

2 3

)(
v11

v12

)
=

(
0
0

)
⇒2v11 + 3v12 = 0

⇒
(
v11

v12

)
= λ

(
3
−2

)
with λ 6= 0. Similarly, for the other eigenvalue,

(A− r2I)v2 =

(
−1− 2 3

2 −2

)(
v21

v22

)
⇒

{
−3v21 + 3v22 = 0

2v21 − 2v22 = 0

⇒
(
v21

v22

)
= λ

(
1
1

)
, λ 6= 0

⇒zn =

(
xn
yn

)
= c1(−3)n

(
3
−2

)
+ c2 · 2n

(
1
1

)
,

and this is the general solution of the problem. But what is the expression for given
x0, y0?

As already seen,
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(
c1
c2

)
=

(
v11 v21

v12 v22

)−1(
x0

y0

)
=

(
3 1
−2 1

)−1(
x0

y0

)
=

1

5

(
1 −1
2 3

)(
x0

y0

)
=

1

5

(
x0 − y0

2x0 + 3y0

)
⇒
(
xn
yn

)
=

1

5
(x0 − y0)(−3)n

(
3
−2

)
+

1

5
(2x0 + 3y0)2n

(
1
1

)
.

It is quite clear that for n→∞, the solution does not converge to a limit. This
would happen instead if the eigenvalues were smaller than 1 in absolute value.

In general, if there is at least one eigenvalue bigger than 1, there is at least some
vector - its eigenvactor - for which the solution tends to “explode”.

4.2 Differential Equations

Example 91 (Savings account). Assume we know

y(t+ 1) = (1 + ρ)y(t)

⇒ y(t− 1)− y(t)

y(t)
= ρ

where ρ is the annual interest rate.
If the interest is paid every ∆t fraction of the year, then we get

y(t+ ∆t)

y(t)
= ρ∆t;

Example 92. If interest is paid every month, then ∆t = 1
12 .

Now interest can also be payed continuously (continuous compounding), we
have to get ∆t to 0.

Consider the differential equation:

lim
∆t→0

y(t+ ∆t)− y(t)

∆t
= ρy(t)

The solution is

y(t) =keρt, k ∈ R
⇒y′(t) = keρtρ = ρy(t)

(notice that only the exponential function has a derivative equal to the function
itself); if y(0) = y0 is given, then

y(0) = ke0 = k

⇒ x = y0
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Definition 93. A first-order differential equation is given by

y′(t) = F (y(t), t)

If F (y(t), t) features t separately - that is, if the equation can be written as
y′(t) = F (y, d) - then it is called autonomous or time-indepedent, otherwise it is
non-autonomous and time dependent

Example 94.
y′(t) = [y(t)]2 + t2

is a non-autonomous second order differential equation. There is no solution.
Instead,

y′(t) = −1

t
y(t) + t3

admits a solution15

We want to discuss a particular class of differential equations:
consider

y′(t) = a(t)y(t) + b(t)

where a(t) and b(t) are real functions. Then the solution exists and is given by

y(t) =[k +B(t)]eA(t) (3)

where A(t) is any function such that A′(t) = a(t), and B is any function such
that

B′(t) = b(t)eA(t) ∀t

Proof.

(3)⇒ y′(t) =b(t)���
e−A(t)

�
��eA(t) + [k +B(t)]eeA(t)︸ ︷︷ ︸

y(t)

a(t)

=a(t)y(t) + b(t)

Remark 95. If F (t) is given by

F (t) =

∫ t

t0

f(s)ds for some t0 ∈ R,

then F ′(t) = f(t) (this is the Fundamental Theorem of Integrated Calculus).

15See exercise 26 in the problem sets.
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Therefore, we can write

F =

∫ t

f(s)ds⇒ y(t) =[k +B(t)]eA(t)

=

[
k +

∫ t

b(s)e−A(s)dy

]
eA(t)

=

[
k +

∫ t

b(s)e−
∫ s a(u)duds

]
· e

∫ t a(s)ds.

After finding an antiderivative, the recipe is quite easy to apply.

Example 96. In chapter 15, we will see Dynamic Optimization. For the moment,
we pospone the discussion of that example.

4.3 Dynamic Optimization

For the topic we will now treat, see also Lambert, Ch. 7.

4.3.1 Introduction

Economic problems can be classified in many ways: one way is the cathegorization
“static” (without time being an essential aspect of the problem) vs. “dynamic”
(with time).

Example 97. The consumer’s problem

x

y

IC

is a typical static problem, while studying what happens, for instance, when the
constraints change in time is a dynamic one.

We can further subdivide dynamic problems between the ones separable across
time and the ones which are not.

max
xt:t=1,...,T

T∑
t=1

f(t, xt)

subject to g(t, xt) ≤ bt, t = 1, . . . , T

this problem is separable. For instance, consider

f(t, xt) =
1

(1 + r)t
h(xt)
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(where the natural interpretation of 1 + r is of a discount factor). We can rephrase
it as

T∑
t=1

{
maxxt f(t, xt)

subject to g(t, xt) ≤ bt

}
solution⇒

T∑
t=1

f(t, x̂t)⇒ x̂ = (x̂1, . . . , x̂T );

the solution of the problem (in discrete time) is reached by solving a series of static
problems - which we already know how to solve. If all dynamic problems were of
this form, life would be easy.

This distinction also holds for problems in continuous time, where the sum is
typically replaced by an integral:

max
x(t):0≤t≤T

∫ T

0

f(t, x(t))dt

subject to g(t, x(t)) ≤ b(t), 0 ≤ t ≤ T .

Again, it is clear that this maximization can be faced by considering indepen-
dently each point in time:

max
x

f(t, x) subject to g(t, x) ≤ b(t) for 0 ≤ t ≤ T

x̂(t) ∀t ∈ [0, T ]

⇒
∫ T

0

f(t, x̂(t))dt.

We now consider problems which are not separable across time.

max
xt

T∑
t=1

f(t, xt, xt−1)

subject to g(t, xt, xt−1) ≤ bt ∀t = 1, . . . , T

Now, the decision taken in period t− 1 influences what can be done in period t.
Similarly, in the continuous case,

max

∫ T

0

f(t, x(t), x′(t))dt

subject to g(t, x(t), x′(t)) ≤ b(t) ∀t ∈ [0, T ]

is not separable.
There are three approaches to dynamic optimization:

• optimal control theory

• calculus of variations

• dynamic programming.
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Historically, calculus of variations precedes optimal control theory, which however
is more general and complete.

On the other hand, both techniques work in continuous times, while dynamic
programming works in discrete time. Since we have limited time available, we will
concentrate on optimal control theory.

4.3.2 Two Examples of Dynamic Optimization

We consider two problems, and will try to “extract” from them a general formula-
tion.

(a) an individual derives income from the interest paid at rate i on her savings S
to be allocated between consumption C and new savings S′(t) = I.

iS(t) = interest paid at moment = C(t) + I(t).

Moreover, it is generally assumed that C(t) ≥ 0, while I(t) can have any sign
(saving stocks can decline).

Moreover, we assume that initially S(0) = S0 > 0.

We can think of the following formalization:

max
C,S

∫ T

0

e−rtu(C(t))dt

subject to
S′(t) = iS(t)− C(t)
S(0) = S0

S(T ) ≥ 0

(where the final 0 doesn’t really play an important role - it could be replaced
with some other constant).

r is the discount rate:

t

e−rt

1

C : [0, T ]→ R is a control variable,
S : [0, T ]→ R is a state variable.

Obviously, by choosing C one indirectly chooses S.

(b) A society unfortunately produces pollution of the air by CO2, in the following
way:

production
+ //

+

		

consumption

+

��
pollution

− //

−

II

welfare

;
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how can this problem be faced? Let

M(t) =concentration of CO2 at time t,

E(t) =rate of emission of CO2,

C(t) = f(E(t))︸ ︷︷ ︸
Production

function

−h(M(t))︸ ︷︷ ︸
Pollution
damage︸ ︷︷ ︸

Production

with f ′ > 0, h′ > 0, f ′′ < 0, h′′ > 0.

Of course, the concentration of CO2 varies over time, as (by assumption):

M ′(t) =aE(t)− bM(t), with

a = technological constant

b =rate of dissipation of CO2 into the outer atmosphere.

By the way, this model was indeed published 20-30 years ago in the American
Revue.

Our decision problem is formalized as:

max

∫ T

0

a−rtU(f(E(t))− h(M(t)))dt

subject to
M ′(t) = aE(t)− bM(t),
M(0) = M0,
M(T ) ≤ Mt,

where by Mt we indicate some fatal level of pollution. E(t) is the control
variable, and M(t) is the state variable.

4.3.3 The Optimal Control Theory Format

Let

x(t) =state variable

u(t) =control variable ;

then, we would like to solve

max

∫ T

0

f(t, x(t), u(t))dt (P)

subject to
x′(t) = g(t, x(t), u(t))

x(0) = x0

x(T ) : some condition to be specified.
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The solution is a couple of functions x̂(·), û(·) which give rise to the optimal
trajectories, or optimal time paths

{(t, x̂(t))|t ∈ [0, T ]}
{(t, û(t))|t ∈ [0, T ]}.

t

x

T

Finally, we can derive the maximum value

V =

∫ T

0

f(t, x̂(t), û(t))dt

of 
max

∫ T
0
f(t, x, u)dt

s.t. x′ = g(t, x, u)

x(0) = x0

x(T ) : some condition.

4.3.4 Optimal Control Theory: a Lagrangian approach

Consider

max

∫ T

0

f(t, x, u)dt

subject to x′ = g(t, x, u) ∀t ∈ [0, T ].

Then, define

L :=

∫ T

0

{f(t, x, u)− λ(t) [x′(t)− g(t, x, u)]} dt (PL)

with λ(t) being the costate variable.

Remark 98. L = L(x(·), u(·), λ(·), x′(·)).

• L(x̂(·), û(·), λ(·), x̂′(·)) = V ∀λ(·), since the only difference between the two
is the term in square brackets... but that term disappears (by assumption).

• ∃λ̂(·) such that solving

max
x(·),u(·)

L(x(·), u(·), λ̂(·), x′(·)) = V

This is something we did not discuss when considering static optimization,
but we can briefly verify why it is so.
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Exercise 99. 16 Let f : R → R be a concave function, and g : R → R a
convex one.

Given the problem

max f(x) subject to g(x) ≤ b

show that x∗ is an constrained maximizer if and only if x∗ is an unconstrained
maximizer of L(x, λ∗), where λ∗ is the multiplier at the solution of the con-
strained problem.

From Kuhn Tucker, we know that if (x∗, λ∗) is a solution, then

∂L

∂x
(x∗, λ∗) = f ′(x∗)− λ∗g′(x∗) = 0 (1)

λ∗[g(x∗)− b] = 0

x∗∗ is a solution to the unconstrained optimization problem

max
x

L(x, λ∗) = f(x)− λ∗[g(x)− b]

⇒∂L

∂x
(x∗∗, λ∗) = f ′(x∗∗)− λ∗g′(x∗∗) = 0 (2)

From equation (1), we get that

f ′(x∗)

g′(x∗)
= λ∗

(2)
=
f ′(x∗∗)

g′(x∗∗)

In particular, since we have sufficient conditions (on f and g) for the unique-
ness of the solution, we get that indeed x∗ = x∗∗.

From the static case, this result translates to the dynamic one.

For the moment, we know that to solve our original problem we want to maxi-
mize (in an unconstrained way) the Lagrange function. If we also find the right λ̂,
then it will give us the maximizer.

There is one problem that we will have to face: maximizing (PL) is easy if the
problem is separable across time... otherwise, it is not, in general (x′ and x appear
both in the function to be maximized).

What we will do is eliminate x′, and consider:∫ T

0

−λ(t)x′(t)dt.

16Problem 22
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From the general formula
∫
fg′ = fg−

∫
f ′g (integration by parts ) we get the

above is equal to

[−λ(t)x(t)]
T
0 +

∫ T

0

λ′(t)x(t)dt

=

∫ T

0

λ′(t)x(t)dt− λ(T )x(T ) + λ(0)x(0)

⇒ L =

∫ T

0

{f(t, x, u) + λ(t)g(t, x, u) + λ′(t)x(t)}dt+ λ(0)x(0)− λ(T )x(T );

we see that we have thrown out x′ - we now only have to maximize the term in
curly brackets. On the other hand, we added λ′ in. . . but notice we don’t maximize
with respect to it!

30/11/10
We have started dynamic optimization and formulated the problem in a general

mathematical formalization.
We have observed that maximizing Lagrange function with the “right” λ func-

tion, we get the solution of our maximization problem. However, maximizing the
integral which appears in the Lagrange function is difficult if x′ appears inside it
(the problem is not separable), so we have to apply integration by parts to get rid
of the problem.

Definition 100. H(λ, t, x, u) := f(t, x, u) + λg(t, x, u) is called the Hamiltonian
for the problem.

We get now, as expression for the function L,

L =

∫ T

0

[H(λ, t, x, u) + λ′x]dt+ λ(0)x(0)− λ(T )x(T ),

and we can now introduce the following:

Theorem 101 (Pontryagin’s Maximum Principle). If the solution (x̂, û) to the
problem (P) exists, then there exists a function λ such that x̂ and û maximize
H + λ′x.

The complete proof can be found in the original work: Pontryagin et al. (1962)
or in the book by Kamien and Schwarz (1981).

The theorem only gives a necessary condition, but it is not difficult to transform
it into a sufficient one:

Theorem 102 (Mangasarian, 1966). If f(t, x, u) is concave in x and u, and if
g(t, x, u) is linear in x and u, then the necessary condition of Pontryagin’s theorem
is also sufficient.

In the two economic examples we introduced last time, in fact, these conditions
will be satisfied, so the necessary condition of Pontryagin’s theorem will also be
sufficient.

So our goal is now to maximize indeed H + λ′x.
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4.3.5 The Hamiltonian conditions

The problem is

max
x,u

H(λ, t, x, u) + λ′x.

This maximization yields necessary conditions:

∂H

∂u
=0 (1)

∂H

∂x
+ λ′ =0 ⇐⇒ λ′ = −∂H

∂x
(2)

x′ =g(t, x, u) ⇒ ∂H

∂λ
= x′ (3)

transversality condition. (4)

They are called Hamiltonian conditions.

4.3.6 Transversality condition

We first list the transversality conditions that we will adopt:

end-point condition transversality condition
(1) x(T ) = xT no condition
(2) x(T ) ≥ xT λ(T ) ≥ 0, λ(T )[x(T )− xT ] = 0
(3) x(T ) ≤ xT λ(T ) ≤ 0, λ(T )[x(T )− xT ] = 0
(4) xT free λ(T ) = 0

and then try to justify them. If we insert the terminal conditions in the La-
grangian, we get

L =

∫ T

0

[H(λ, t, x, u) + λ′x]dt+ λ(0)x(0)− λ(T )x(T )− µ[x(T )− xT ]︸ ︷︷ ︸
=0 at solution

.

Now we maximize maxx,u L, and hence put

∂L

∂x(T )
= 0

⇒− λ(T )− µ = 0

⇐⇒ λ(T ) = −µ

⇒V =

∫ T

0

[H(λ, t, x̂, û) + λ′x̂] + λ(0)x̂(0)−�����λ(T )x̂(T ) +�����λ(T )x̂(T )− λ(T )xT .

We can hence now look at

∂V

∂xT
= −λ(T ) :
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Case 2 : x(T ) ≥ xT .

Consider what happens if we decrease xT : the constraint is relaxed, becomes
weaker, so the maximum value V can only increase. So

∂V

∂xT
≤ 0⇒ λ(T ) ≥ 0

Case 3 : x(T ) ≤ xT . If now we increase xT , again the maximum value of V can
only increase:

∂V

∂xT
≥ 0⇒ λ(T ) ≤ 0

Case 1 : x(T ) = xT .

The sign of λ depends on the sign of ∂V
∂xT

, which can be positive or negative
- we can make no prediction.

Case 4 : x(T ) free. This means

0 =
∂L

∂x(T )
= −λ(T )

4.3.7 Interpreting the costate variables

V =

∫ T

0

[H(λ, t, x̂, û) + λ′x̂] dt+ λ(0)x0 − λ(T )xT

because x̂(0) = x0. Hence, we can now look at what happens when we change
the initial value:

∂V

∂x0
= λ(0)

⇒ λ(0) express the sensitivity of the maximum value to a change in the initial
value x0 of the state variable.

In fact, more generally, at s ∈ [0, T ],

∂V

∂xs
(x̂(s)) = λ(s).

t

x

T

x̂

s

Consider
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V = max

∫ T

0

f(t, x, u)dt subject to x′ = g(t, x, u)

x(0) = x0

x(T ) : some condition

= max

∫ s

0

f(t, x, u)dt subject to x′ = g(t, x, u)

x(0) = x0

x(s) = x̂(s)

+ max

∫ T

s

f(t, x, u)dt subject to x′ = g(t, x, u)

x(s) = x̂(s) =: xs

x(T ) : some condition

def
= V1 + V2

⇒V2

∫ T

s

[H(λ, t, x̂, û] + λ′x̂dt+ λ(s)xs − λ(T )xT

⇒∂V2

∂xs
(x̂(s)) = λ(s)

How can we visualize this? The consumer had planned some consumption path,
but at some point her savings may unexpectedly increase:

t

x

T

x̂

s

x̂

λ(s) expresses the sensitivity of the maximum value to an exogenous change in
the state variable at time t = s.

4.3.8 Using the Hamiltonian condition to solve problems

Recall problem A:

max

∫ T

0

e−rtU(C)dt subject to
S′ = iS − C
S(0) = S0 (x = S)
S(T ) ≥ 0 (u = C)
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Let’s form the Hamiltonian:

H =f + λg = e−rtU(C) + λ(iS − C)

⇒ Hamiltonian conditions:

(1)∂H∂C = e−rtU ′(C)− λ = 0
(2)λ′ = −λi

(3)S′ = iS − C
(4)λ(T ) ≥ 0, λ(T )S(T ) = 0.

We now impose those conditions:

(2)⇒ λ′(t) = −iλ(t)

Recall that we had seen the general case y′(t) = ρy(t), with solution y(t) = y0e
ρt,

so in this case we get

λ(t) = λ(0)e−it ∀t.
λ(T ) = λ(0)e−iT

Now, we know λ(0) = ∂V
∂S0

> 0, because if in the beginning there are more
savings, it’s plausible that the consumer will be better off (consume more) - it is
obvious if she changes her consumption path projects, while if she doesn’t reprogram
then, she will just consume more in the first period (and we assume U is increasing
in C). Hence, λ(T ) > 0.

Having this, we can apply (4) and get, from the complementary slackness con-
dition, that

S(T ) = 0.

Now,

(1)⇒e−rtU ′(C(t))− λ(0)e−it︸ ︷︷ ︸
λ(t)

= 0

⇐⇒ U ′(C(t)) = λ(0)e(r−i)t (5)

Therefore, if (U ′)−1 exists, then

C(t) = (U ′)−1
(
λ(0)e(r−i)t

)
.

It is quite typical that the derivative of U does exist - often, U is assumed to
be concave.

A further assumption is then often a specification of the utility function. We
will now assume:

U(C) = lnC :

so that we can really solve the particular problem. We have

U ′(c) =
1

C

(5)⇒ 1

C(t)
= λ(0)e(r−i)t

⇐⇒ C(t) =
1

λ(0)e(r−i)t . (6)
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Once we find λ(0), we are hence able to determine C(t). Let’s come back to S:

S′(t) = iS(t)− C(t).

Recall that

y′(t) = a(t)y(t) + b(t)

has as solution

y(t) = [k +B(t)] eA(t)

where A′(t) = a(t) and B′(t) = b(t)e−A(t).

Here: a(t) = i, b(t) = −C(t)
(6)
= − 1

λ(0)e(r−i)t
.

We now face the typical obstacle of this class of problems: find the antiderivative.
In this case, however, it is particularly easy:

A(t) =it

⇒ B′(t) =b(t) = − 1

λ(0)e(r−i)t · e
−it

=− 1

λ(0)ert
= − 1

λ(0)
e−rt

⇒ B(t) =− 1

r

(
− 1

λ(0)
e−rt

)
=

1

rλ(0)
e−rt

Now we have A(t) and B(t), we can compute

S(t) =

[
k +

1

rλ(0)
e−rt

]
eit ∀t

⇒ S(T ) =

[
k +

1

rλ(0)
e−rT

]
eiT

but we also know (from condition (4)) that S(T ) = 0. Since eit 6= 0, we have that

k =− 1

rλ(0)
e−rt

⇒ S(t) =

[
− 1

rλ(0)
e−rt +

1

rλ(0)
e−rt

]
eit

=
eit

rλ(0)

(
e−rt − e−rT

)
∀t.

In particular, this is true for t = 0, so that

S(0) =
1

rλ(0)

(
1− e−rT

)
= S0

⇐⇒ λ(0) =
1

rS0

(
1− e−rT

)
⇒ Ŝ(t) =

eitS0

1− e−rT
(
e−rt − e−rT

)
∀t
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This is finally an explicit expression for the state variable S in time.
Of course, we want to also know consumption, so equation (6) gives us

Ĉ(t) =
rS0

(1− e−rT ) e(r−i)t ∀t.

What is the economic significance of these expressions? Solutions obviously
depend on r (interest rate) and i (discount rate).

• If, for instance, r = i, then Ĉ(t) = rS0

1−e−rT , forall t. But t doesn’t appear at all
in this expression. Hence, under this assumption consumption is stable across
time (and the consumer is running down initial savings, hence disinvesting).

• If instead r < i, of course r − i < 0 and hence

de(r−i)t

dt
< 0⇒ dĈ(t)

dt
> 0;

the consumer is forward-looking and wants to have a good retirement.

• Viceversa, if r > i,
dĈ(t)

dt
< 0:

the consumer decreases consumption in time.

Of course, in all three cases the consumer will arrive at T having disinvested
everythin. But we may also look at what happens if T =∞. This of course doesn’t
make sense for a single consumer, but still, it is interesting to verify (also because
the assumption is not that meaningless in other contexts - i.e. considering a society
instead than an individual).

T =∞⇒ Ĉ(t) =
rS0

e(r−i)t

⇒ lim
t→∞

Ĉ(t) =


rS0 if r = i (the consumer only consumes what he gets as interests)

+∞ if r < i

0 if r > i.

This was just an example of the possibility to study infinite orizons.

4.4 The path to the steady state: diagrammatic analysis

Let’s recall that x̂, û were the solutions to

max

∫ T

0

f(t, x, u)dt subject to
x′ = g(t, x, u)
x(0) = x0

x(T ) : some condition.

Now, if T =∞, we can consider x̂(t), û(t) for any t. Therefore, we can study

lim
t→∞

x̂(t), lim
t+∞

û(t).

In that case:
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• Hamiltonian conditions (1) - (3) remain valid (T didn’t appear inside them),

• the transversality condition becomes, for example in case (3),

lim
t→∞

x(t) ≤ x⇒ lim
t→∞

λ(t) ≤ 0 and lim
t→∞

λ(t) [x(t)− x] = 0.

(other cases are analog).

If lim x̂(t) exists, then t→∞.

x∗ := lim
t→∞

x̂(t) :

the limit will be called a stationary state. Questions:

1. how does x∗ vary with the parameters? This is an exercise of comparative
statics.

2. How does the path towards x∗ vary with the parameters? This is an exercise
of comparative dynamics.

We will face those question next time.
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02/12/10
So far, we have derived the Hamiltonian conditions which are, according to the

Pontryagin’s theorem, necessary conditions which sometimes also become sufficient.
Recall that

V = max

∫ ∞
0

ertf(t, x, u)dt

s.t. x′ = g(t, x, u)

x0 = x0

x(∞) : some condition

⇒ ∂V

∂s
(x̂(s)) = λ(s) ∀s ≥ 0

and that this is the marginal value of the state variable at time t = s discounted
back to time t = 0, that is, at the moment of planning of the state variable.

Now recall that our Hamiltonian H was defined as

H = e−rtf(t, x, u) + λ(t)g(t, x, u)

The discounting in λ is implicit in it. But we can rewrite the above as:

H = e−rt

f(t, x, u) + ertλ(t)︸ ︷︷ ︸
m(t)

g(t, x, u)


︸ ︷︷ ︸

current value Hamiltonian

and

m(t) = ertλ(t) = current value multiplier,

which is the marginal value of the state variable at time t in terms of values at
t. We shall use this new multiplier in the solution to our problem, but before let’s
give a

Definition 103. (x∗, u∗) is a stationary or steady state if for all t ≥ 0 we have the
following:

x(t) = x∗, m(t) = m∗ ⇒ x′(t) = m′(t) = 0

t

0 t1 t2

if x(t) = x∗, then λ(t1)  λ(t2), but it can still happen that m(t1) = m(t2).
Instead than seeing abstract justifications, let’s get back to the problem (B):

max

∫ ∞
0

e−rtU(f(E)− h(M))dt

subject to M ′ = aE − bM
M(0) = M0

lim
t→∞

M(t) ≤M
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As we had seen,

x =M, u = E,

H =f + λg

=e−rt

U(f(E)− h(M)︸ ︷︷ ︸
C

) +m(aE − bM)


(recall m = ertλ(t)).
So the Hamiltonian conditions are

1.
∂H

∂E
= e−rt [U ′(C)f ′(E) +ma] = 0;

it is clear that the exponential is redundant:

U ′(C)f ′(E) +ma
(a)
= 0;

2.

λ′ =− ∂H

∂M
, λ = e−rtm

⇒− r���e−rtm+���e−rtm′ = −���e−rt [U ′(C)(−h′(M))−mb] .

So considering the current value allows us to get rid of the discounting factor.
We can rewrite that as:

m′
(b)
= m(r + b) + U ′(C)h′(M).

3.

∂H

∂λ
= M ′ ⇒ aE − bM = M ′

and we can use this now to express E:

E
(c)
=
M ′ + bM

a
.

So we have three equations for three variables (M , E and m). This is a system
of differential equations which is not easy to solve, so we make a further simplifying
assumption:

U(C) = C

(this is obviously the simplest simplification one can think of, but it’s not particularly
absurd - in the end well-being of countries is tipically measured with GDP).

Of course, this simplification implies U ′(C) = 1, so we can simplify our expres-
sions:

(a), (c)⇒m (d)
= −

f ′
(
M ′+bM

a

)
a

(b)⇒m (e)
=
m′ − h′(M)

r + b
.
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This is already nicer, because we have two variables in two differential equa-
tions. . . and the system is autonomous (so one could hope to solve it).

At a stationary state, we must have M ′ = m′ = 0. This means that

(d), (e)⇒

m =−
f ′
(
bM
a

)
a

(M’=0)

m =− h′(M)

r + b
. (m’=0)

When we satisfy both equations (and only in that case), we are in a steady state.
We want now to try to draw qualitatively those functions. If for instance one

equation has positive slope and one negative, it would be more plausible that they
intersect:

∂m

∂M

∣∣∣∣
M ′=0

= −
f ′′( bMa

b
a

a

f ′′<0
> 0

which has positive sign (because we have said that f ′′ is a concave function).
On the other hand,

∂m

∂M

∣∣∣∣
m′=0

= −h
′′(M)

r + b

h′′>0
< 0

and this seems like good news.

Remark 104. m, the costate variable, is negative. Does that mean anything? We
know that

0 >
∂V

∂Ms
= λ(s) = ersm(s)

(where the first inequality can be seen as the intuition that when pollution increases,
the maximum value decreases). This can help us draw the picture:

M
m

M ′ = 0

m′ = 0

m∗

M∗

We can now make a couple of comparative statics exercises:

Example 105. Let’s consider an increase in r: the locus M ′ = 0 doesn’t change,
while m′ = 0 does:
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M
m

M ′ = 0

m′ = 0

m′ = 0
m∗

M∗

m∗

M∗

Analogously, we could consider a change in a, which is the coefficient deter-
mining how polluting is technology. What would happen if technology became
greener?

And in the same way, we can study what a change in b implies.

Let’s notice that

E∗ =
bM∗

a
.

The final lesson of this part is that we can say something economically mean-
ingful even when we can’t explicitly solve differential equations.

We will now address the second question we had formulated: comparative
dynamics. Let’s consider again the situation M ′ = 0.

M
m

M ′ = 0

− f
′( bMa )
a

M

m

If we take point (M,m) ∈ {M ′ = 0}, we have

m = −
f ′
(
bM
a

)
a

;

if instead the point is above, we have

m > −
f ′
(
bM
a

)
a

or more precisely

m
(d)
= −

f ′
(
M ′+bM

a

)
a

> −
f ′
(
bM
a

)
a

⇐⇒ f ′
(
M ′ + bM

a

)
< f ′

(
bM

a

)
;

since we know f is concave, if the right hand term is bigger, it must have a bigger
argument:

M ′ + bM

a
>
bM

a
⇒M ′ > 0.

102



It is easy to verify that if we take a point under the line, the opposite holds:

M
m

M ′ = 0

− f
′( bMa )
a

M

m

Consider now {m′ = 0}:

M
m

m′ = 0

−h
′(M)
r+b

M ′

If (M,m) ∈ {m′ = 0}, we know m = −h
′(M)
r+b .

If (M,m) is above (m′ = 0), then

m
(e)
=
m′ − h′(M)

r + b
> −h

′(M)

r + b
⇐⇒ m′ > 0.

We are ready to put the two things together in a singl diagram:

M
m

M ′ = 0

m′ = 0

Such a graph is called a phase diagram.
Looking at it, we may be a bit skeptical with respect to the equilibrium: no

arrows point directly toward it: does it have any interesting meaning?
Let’s first try to trace possible trajectories when passing through the two lines:
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M

m

M ′ = 0

m′ = 0

C

C

Again: what is the probability that this (blue) convergent path - which is (in
this case) a monodimensional object in two dimensions - will ever by attained?

It can be shown that if the system of differential equations is stable, then the
optimality conditions place the dynamic system on the convergent path, that is:

M0 7→ m(0) s.t. (M0,m(0)) ∈ CC.

4.4.1 Optimal control: an extension

We will now discuss an extension to the formulations seen so far17: consider

max

∫ T

0

f(x, u, t)dt

subject to x′ = g(x, u, t)

x(0) = x0

x(T ) : some condition

u(t) ∈ Z ⊂ R

We get the following Hamiltonian conditions: if (x∗, u∗)18 is a solution, then
∃λ∗(t) such that

H(t, x∗(t), u∗(t), λ∗(t)) ≥ H(t, x∗(t), u, λ∗(t)) ∀u ∈ Z (1)

(u∗ is a maximizer). If we had an unconstrained problem, we would just put
the partial derivative with respect to u equal to 0. Now, we must change approach
(while conditions (2)− (4) are exactly as before).

Exercise 106. Let’s solve Problem 32:

17Used, for instance, in exercise 32 of the problem sets.
18This notation is different from the one used so far, in which we had x̂ and û
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max

∫ 4

0

3x(t)dt

s.t. x′ = x(t) + u(t)

x(0) = 5, x(t) free

u(t) ∈ [0, 2] ∀t

The Hamiltonian is:

H(t, x, u, λ) = 3x+ λ(x+ u)

and it gives the conditions:

H(t, x∗, u∗, λ∗) ≥H(t, x∗, u, λ∗) ∀u ∈ [0, 2] (1)

λ∗′ = −∂H
∂x

= −3− λ∗ (2)

x∗′ =
∂H

∂λ
= x∗ + u∗ (3)

λ∗(4) = 0 (4)

x∗(0) = 5

Conditions are sufficient because we satisfy the hypothesis of Mangasarian the-
orem. Let’s start imposing them:

(2)⇒ λ′(t) = −λ(t)− 3

Remark 107. In general, when we have

y′(t) = ay(t) + b,

then y(t) = keat − b
a .

In fact:

y′(t) =akeat

=a

(
keat − b

a

)
︸ ︷︷ ︸

y(t)

+b

=ay(t) + b.

In the present case, a = −1 and b = −3. Therefore,

λ(t) = ke−t − 3 ∀t
(4)⇒λ(4) = ke−4 − 3 = 0

⇐⇒ k = 3e4

⇒λ(t) = 3e4−t − 3

This stated, we can draw this function:
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t

y

λ∗

40

Then,

(1)⇒ max 3x+ λ∗x+ λ∗u u ∈ [0, 2] :

we can maximize this simply by setting u as large as possible. . .u∗(t) = 2 ( for any
value of t).

(3)⇒x′(t) = x(t) + u∗ = x(t) + 2

⇒a = 1, b = 2

⇒x(t) = ket − 2 ∀t ∈ [0, 4]

In particular, this implies

x(0) = k − 2
(4)
= 5 ⇐⇒ k = 7

⇒x∗(t) = 7et − 2

19

19sic
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