
Exact calculations in the

Mann-Whitney-Wilcoxon test

Pietro Battiston

This version: July 17, 2015

The Mann-Whitney-Wilcoxon test, or Mann-Whitney U test, tests non-parametrically
the hypothesis that two sets come from the same distribution. Intuitively, this
is done by ordering all the elements of the two sets and then studying the ranks.
Broadly speaking, the two following steps are executed:

1. a U statistics is calculated from the two sets,

2. the resulting value is compared to the theoretical distribution of such U
statistics, yielding a probability which can be interpreted as a p-value.

The first task can be accomplished with at least two different methods, both
quite straightforward and computationally cheap.

This short note focuses on the execution of the second step. Mann and Whit-
ney (1947) provide in their Equation (1) a recursive definition of the probability
of a given U given sizes m and n of the two sets:

p(n,m,U) =
n

n + m
p(n− 1,m,U) +

m

n + m
p(n,m− 1, U)

which, knowing that

• p(0,m, 0) = p(n, 0, 0) = 1,

• p(0,m,U) = p(n, 0, U) = 1 whenever U = 0,

• p(n,m,U) whenever U < 0,

makes it easy to calculate p(n,m,U) for any n,m,U (and hence to derive the

desired p-value as
∑U

u=0 p(n,m,U)). However, given the computational cost of
this recursive calculation, statistical packages tend to provide an approximation,
based on the fact that for m and n large enough, the distribution of U− 1

2 (nm+1)
differs only a negligible amount from the normal distribution (as Mann and
Whitney, 1947 themselves state, considering the case m = n = 8 - they then
proceed to showing that the limit distribution of U is normal with m and n
both approaching infinity).

As of writing this note,

1



• the R command wilcox.test()1 uses the exact calculation “if the [total
size of the two] samples contain less than 50 finite values” (or if the ar-
gument exact is set to TRUE),

• the STATA command ranksum2 always uses the approximation3, but the
add-on package ranksumex performs instead the exact calculation “if the
total size of the two samples is <= 25”.4,

• the function stats.mannwhitneyu from Python’s scipy library always
uses the approximation, and this is why the documentation states “use
only when the number of observation in each sample is > 20”;5 however
a set of patches currently under review deprecates it, and introduces the
new method stats.mann whitney u, which does the exact computation
when any of the two samples has less than 10 elements (or if the argument
“exact” is set to True).

Now, the MWW test is often used with very small samples, and in particular
has the nice feature (i.e. compared to the “Wilcoxon signed rank test”) that
the two sets need not to be matched. So one of the two can be significantly
smaller than the other. For instance you can ask “if I have one observation with
value 0 and 50 observations with values > 0, what is the likelihood of the first
observation coming from the same distribution as the others 50?” (and get a
non-parametric answer). The problem is that while 50 is a pretty large number
for our purposes, 1 (the size of the first set in this example) is definitely not very
close to infinity. How reasonable is the normal approximation in this case? Is
its accuracy really related to the sum of m and n? Concerning the meaning of
the “exact” parameter in R and Python, what is the best implementation of the
“auto” default value? In order to answer these questions, I ran a simple analysis
on the difference between result of the exact algorithm and the approximated
one.6

The results can be seen in the following figures, for different m, n, both with

U = q(q+1)
2 , where q = min(3, f loor(m/2), f loor(n/2)) (“small U”), and with

U = max
(

n(n+1)
2 ,mn

)
(“large U”).

Indeed, the error decreases with increasing m, n. However it does not de-
crease as a function of m+n; rather, it has a non-trivial behavior, and for some
small values of m it can actually be increasing in n. Figure 2 in particular
highlights the fact that while the error of the approximation tends to 0 for m

1https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html
2http://www.stata.com/help.cgi?ranksum
3As reported also in http://www.senresearch.org/stata-and-r-ranksum-test-p-values-differ.

html
4http://www.stata-journal.com/software/sj13-2/st0297/ranksumex.sthlp
5http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.

mannwhitneyu.html
6The IPython notebook used for the analysis and my Python implementation it uses

(based on the source of the R implementation) can be found at http://pietrobattiston.

it/economics/mww.

2

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html
http://www.stata.com/help.cgi?ranksum
http://www.senresearch.org/stata-and-r-ranksum-test-p-values-differ.html
http://www.senresearch.org/stata-and-r-ranksum-test-p-values-differ.html
http://www.stata-journal.com/software/sj13-2/st0297/ranksumex.sthlp
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.mannwhitneyu.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.mannwhitneyu.html
http://pietrobattiston.it/economics/mww
http://pietrobattiston.it/economics/mww


(a) Plot of error, small U (b) Heat map of error, small U

(c) Plot of error, large U (d) Heat map of error, large U

Figure 1: Error of the normal approximation, for varying (m,n).

3



(a) Pairs (m,n) for which the error is above
0.001 - small U

(b) Pairs (m,n) for which the error is above
0.002 - small U

(c) Pairs (m,n) for which the error is above
0.001 - large U

(d) Pairs (m,n) for which the error is above
0.002 - large U

Figure 2: (m,n) pairs for which the error is larger than a given threshold.

4



(a) Python reimplementation7- small U (b) R - small U

(c) Python reimplementation - large U (d) R - large U

Figure 3: Computation times for varying of (m,n).

5



close to n, this does not happen - or happens more slowly - for m or n close to
0.

Resorting to the approximated significance for large values of m or n but
small values of the other could be justified if the computational cost of the ex-
acted calculations was exploding in their sum. But as can be seen in Figure 3,
this does not happen: the computational cost seems to be rather related to the
minimum between m and n, (except when U is small - but this is exactly when
the computation is overall cheaper). This is coherent with the theoretical com-
plexity of the algorithms used in the simulations, which is O(n2m2); Nagarajan
and Keich, 2009 discuss a method with lower asymptotic cost, an implementa-
tion of which is apparently contained in the ranksumex package (Harris et al.,
2013). 8

So in conclusion the safe choice for a statistical package seems to resort to
the approximation of the statistics for a given U not if m + n is large enough,
but rather if m and n both are large enough - what “large enough” means
is then a decision which can be taken looking at the specific computational
cost. The new method mann whitney u in scipy hence seems to make the
right choice (although notice that differently from the implementations analyzed
in the present note, its calculation of the exact p-value is not based on the
algorithm by Mann and Whitney, 1947, but on a different one which could have
a computational cost behaving drastically differently for varying m, n and U).

References

Harris, T., J. W. Hardin, et al. (2013). Exact wilcoxon signed-rank and wilcoxon
mann–whitney ranksum tests. Stata Journal 13 (2), 337–343.

Mann, H. B. and D. R. Whitney (1947). On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical
statistics, 50–60.

Nagarajan, N. and U. Keich (2009). Reliability and efficiency of algorithms
for computing the significance of the mann–whitney test. Computational
Statistics 24 (4), 605–622.

8The Python version does not refer to the implementation soon to be merged in scipy, but
rather to a naive implementation of the algorithm described by Mann and Whitney (1947).

6


