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Consider a situation in which data is available about K samples (possibly,
but not necessarily, time series), each containing N observations. The hypothe-
sis of a researcher is that in a given set T , which includes exactly one observation
from each sample, there was a positive shift.

For an example, assume that the researcher was told that on April 1st of
some year, the temperature around the world was significantly higher than in
the other 29 days of the month, and she wants to understand whether this is a
joke. She has access to daily temperature measurements from 10 different cities,
but the temperatures of such cities are well known to be very etherogeneous
(and uncorrelated - as unrealistic as this assumption may seem in the example
proposed).

How can the researcher test such hypothesis without making any distribu-
tional assumption (i.e. normality of temperatures)? In this short note I will
compare three possible methods:

1. a Mann-Whitney U test (Mann and Whitney, 1947) which compares the
10 values observed for April 1st against the 10× 29 = 290 values observed
on the other days,

2. a set of 10 different Mann-Whitney U tests (one for each city), the p-
values resulting from which are then aggregated in a single p-value with
the Fisher method for meta-analysis,

3. a new (to the best of my knowledge!) test which I present in the following
section.

1 Description of the “ballrank” test

Consider city i, and sort the observations from the warmest day to the coldest
one. Let ri be the (0-based) rank of the observation for April 1st: it can take
any value from 0 to 29, and under the null hypothesis that the temperature
on April 1st is not exceptionally high, any of these values is equally probable.
Hence, the sum across cities of the ranks,

R =
K∑
i=1

ri,
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is, still under the null hypothesis, distributed as the sum of K discrete uni-
form variables from 0 to N − 1. What does this distribution look like?

As already observed, any value from 0 to N − 1 is equally probable for each
ri, and hence each of the NK combinations in {0, . . . , N − 1}K is also equally
probable. How many combinations result in a given value of R? The answer is
the same as to the question of how many ways there are to distribute R balls
in K bins each with place for maximum N − 1 balls, which is well known to be

K∑
i=0

(−1)i
(
K

i

)(
R+ k − 1− iN

K − 1

)
,

hence giving a pdf for a given R of

p(R,K,N) =

∑K
i=0(−1)i

(
K
i

)(
R+k−1−iN

K−1
)

NK
.

By comparing the observed R with the (CDF of the) distribution just de-
scribed, a p-value can be easily computed. Although the procedure is relatively
computationally cheap, for large values of the parameters it can also simply be
approximated with a normal distribution: more precisely, since R is the sum of
K discrete uniform distributions, each with mean

µ =
N − 1

2

and variance
σ2 = ((N)2 − 1)/12,

the Central Limit Theorem guarantees that

R−Kµ√
σ2 ·K

K→∞→ N (0, 1).

2 Comparison of the tests

Intuitively, the main conceptual difference between the pooled Mann-Whitney
U test (method 1) on one side and the two other methods on the other side
is that the former sacrifices some information (the composition of the samples
- e.g. the fact that the observations come from different cities, with different
climates) in order to obtain a single large sample on which to run the test (the
combinatorial nature of the test implying that its power tends to increase with
the sample size). So the relative power of such method compared to the others
two should decrease the larger the differences between cities.

A more subtle difference between methods 2 and 3 is related to the fact
that the p-value associated to any given statistics S, calculated against any
given distribution D, is obtained as the probability of a result being, “just by
chance”, at least as extreme as S. When the domain of D is composed by an
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infinite or very large set of points (and D is not concentrated in few of them),
the fact that the inequality is weak is close to irrelevant; but if instead such
domain contains few points, the probability of a result being at least as extreme
as S is significantly larger than the probability of a result being strictly more
extreme than S. Now, according to method 2 a Mann-Whitney test is first ran
on each subsample. When, as in this case, one of the two sets is composed by
only one element, the Mann-Whitney test is equivalent to dividing the rank of
such element by the total number of observations. If such total number is small,
the fact that the inequality is weak is relevant, and this implies a loss of power
of the test. On the other hand, if the ranks are first summed and then their sum
is compared to its theoretical distribution under the null hypothesis, the fact
that the inequality is weak becomes much less relevant, because each point in
the domain of such theoretical distribution has a low probability mass. Notice
that while there are alternatives to the Fisher test for aggregating p-values from
independent tests of a same hypothesis (e.g. the z-transform method - also
known as “Stouffer’s approach” - or the Edgington method), and they may
perform better or worse depending on the kind of data analyzed, the choice of
which to use is irrelevant for the problem just described.

2.1 Simulations

The three methods were compared using a Monte Carlo approach. Samples
were created according to the following model:

xi,j = τTi + ∆j + εi,j

where the parameters τ and ∆ denote respectively the effect that the re-
searcher wants to identify and a group-specific fixed effect, and εi,j is a random
component extracted from a uniform distribution over the interval [0, 1]. Notice
that the model is set up in such a way that for large values of ∆ (i.e. ∆ > 1+τ),
any observation from group j + 1 is larger than any observation from group j.
On the other hand, if ∆ = 0, then all groups are identically distributed. The
boolean variable Ti, which determines the sample on which the effect is present,
is defined as true only for a given value of i, and false otherwise: without loss
of generality, let us set Ti = 1 ⇐⇒ i = 1.

Several combinations of the parameters τ and ∆ were simluated: for each,
1000 different samples were created, each with i ranging from 1 to N = 8, and
j ranging from 1 to K = 15, and on each sample the three methods were ran in
order to compare the distributions of the resulting p-values.

The distinction drawn at the beginning of the present section between the
pooled MWW test and the other two methods can be reformulated by stating
that such method is relatively advantaged for a value of ∆ close to 0, i.e. when
the information about the different groups is of negligible importance; the other
two methods are expected to perform relatively better for values of ∆ which are
larger (relatively to the value of τ).

This is indeed what emerges from Figure 1. For larger values of ∆, the new
test is much more powerful than the pooled MWW test: when ∆ = 0.6, the

3



(a) τ = 0.1, ∆ = 0 (b) τ = 0.6, ∆ = 0

(c) τ = 0.3, ∆ = 0.3 (d) τ = 0.3, ∆ = 0.6

(e) τ = 0.6, ∆ = 0.3 (f) τ = 0.6, ∆ = 0.6

Figure 1: (Logs of) p-values obtained for different values of the parameters τ
and ∆. The results are sorted according to the reference p-values obtained with
method 1 (pooled MWW). The dashed horizontal lines signal the 1%, 5% and
10% confidence intervals.
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Figure 2: Same p-values as in Figure 1 (a), but with the results for each method
sorted independently from the others (in order to reconstruct three cumulated
distribution functions).

latter is never significant, even at the 10% level, while the former usually is
(and is always significant at the 1% level for τ = 0.6). However it is interesting
to notice that in the case in which the informational advantage is the lowest
(∆ = 0), the pooled MWW test is more powerful than the new test by a very
small margin (which can be seen more clearly in Figure 2).

Even more intriguingly, the difference blurs with increasing values of τ , even
keeping ∆ = 0, as can be seen in Figure 1 (b): the new method performs
consistently better than the pooled MWW for small p-values. This may be of
limited interest, however, since both methods reach significant levels in all cases.

Summing up, while the pooled MWW emerges as more powerful than the
new test only under specific assumptions, and by a slight margin, the new test
achieves significance in many cases in which the pooled MWW does not.

Concerning method 2, when comparing with the pooled MWW, it is again
advantaged whenever the difference between groups is relevant information
(when ∆ > 0), but it is dominated by the new test in virtually all cases. As
already mentioned, this could reflect two different phenomena: the specific ag-
gregation method used (the Fisher method), and the fact that information is
“wasted” when applying the weak inequality in each group. While disaggregat-
ing the two effects is out of the scope of the present note, Figure 3 provides clean
evidence that method 2 is inefficient: the expected distribution of p-values in
the case in which the null hypothesis holds (∆ = 0) should be uniform between
0 and 1, and this is what happens, at least approximately, when using the two
“direct” methods (1 and 3). When aggregating the results of the group-level
Mann-Whitney tests, instead, the distribution is clearly biased towards higher
values.
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Figure 3: P-values in the case ∆ = τ = 0: results for each method sorted
independently.

3 Conclusions

A test is presented which allows to compare one value against some others
across a given number of subsamples of equal size. If the subsamples are not
identically distributed, the new sample is able to exploit this information in
order to achieve higher power than a Mann-Whitney U test ran on all the
values pooled together: on the other hand, if the subsamples are identically
distributed, the Mann-Whitney U is more powerful only in some cases, and by
a slight margin.

The new test could in principle be generalized to the case in which the groups
have different sizes. One simple way to do so is to make all groups of the same
size by adding observations in the smaller ones: in order to obtain conservative
results, however, such artificial observations should be larger than any other
items in the groups they are added to, and this would decrease the power of
the test (although to a small extent if the number of artificial observations
needed is small - i.e. if groups are almost the same size). In principle, the
sum of ranks from groups of any size could be also compared to its theoretical
distribution, but such theoretical distribution is less obvious to compute than
the one described in Section 1. Whatever approach is adopted in such extension,
it should also be noted that so far each observation (or equivalently, each rank
position) was assumed to be equally informative: if subsamples have different
sizes, this may not necessarily be true.

Finally, the test could also be extended to the case in which the intersec-
tion of the set T with each subsample does not necessarily contain exactly one
element. Again, it is in principle straightforward to calculate the theoretical
distrubution of the resulting sum of ranks, but it is computationally far from
trivial. Since the distribution of the U statistics is asymptotically normal, the
same can be said for the sum of several U statistics, but this observation is of
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limited utility if the tests analyzed in the present note are to be used, as in the
example provided, for studying small samples.
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